Presumption of Asperities for the Anticipated Tokai Earthquake
(Seismic Activity Change and Crustal Deformation in the Tokai Region: Part 5)

Shozo Matsumura
National Research Institute for Earth Science and Disaster Prevention,
Tennoudai 3–1, Tsukuba, Ibaraki 305-0006, Japan

Mikio Satomura and Sayaka Uchiumi
Faculty of Science, Shizuoka University, Oya 836,
Suruga-ku, Shizuoka, Shizuoka 422–8529, Japan
(Received August 28, 2007; Accepted February 8, 2008)

It is meaningful to presume the location of asperities for the anticipated Tokai earthquake in view of risk assessment and also for earthquake prediction. These asperities were first specified based on the seismic activity change, and verified in comparison with the result derived from GPS measurements. In central Shizuoka Prefecture, the seismicity change progressed almost simultaneously with the slow-slip beneath Lake Hamana from 2000 to 2005 and resulted in a separation of the activity into quiescence and activation. This change was considered to be caused by a quasi-static slip on the locked plate boundary, triggered by the slow-slip, and the activated zones were assigned to be asperities due to stress concentration there. We thus extracted several zones as candidates of the major asperities. On the other hand, the Japanese University Consortium developed a dense GPS network in the western and central parts of Shizuoka Prefecture in order to know the crustal deformation in detail. Analyzing the data together with those from GEONET by the Geographical Survey Institute during two years since 2004, we got the detailed distribution of the areal strain associated with the slow-slip. The results show a patch-like pattern between the contracted areas and the dilated ones with a wavelength of about 20 km. We estimated areal strain by using a dislocation model arranged for the candidates of the asperities obtained from the seismicity change, and compared it with that from the GPS measurements. The result gave a good correspondence between them. This fact suggests that the presumed asperity model is reliable and valuable in the study on hazard mitigation against the anticipated Tokai earthquake.

Key words: Seismicity change, Presumed Tokai earthquake, GPS, Areal strain distribution, Asperity
す）に随伴するかたちで静岡県中西部のプレート境界を挟む上下盤の地震活動度が変化したことによる。松村（2007a）は、スロースリップが始まる以前および進行中の2期間の地震発生率比から、静岡県中西部を「静穏化域」と「活性化域」に分けて、このうち「活性化域」の近傍にアスペリティがあるだろう、との判断を示した。判断の根拠としたのは次の仮説である。まず、アスペリティは断層帯すなわち東海地震の想定震源域の中から対応する断層帯が強い場所と、定義する。そして、微小地震で構成されるバックグラウンド地震活動の増減は、その場所での応力蓄積速度の増減を反映したものであり、「活性化域」と「静穏化域」の境界付近でその増減が起きたことは、スロースリップによって断層帯本体のうちにおける応力蓄積の再分配が誘発されたことによる、と考える。つまり、スロースリップがトリガーするためで断層帯内の強度の弱い非アスペリティ部分に静的滑りが進行し、結果的にアスペリティへの応力集中が促進されたと解釈する。結局、「活性化域」が丘アスペリティの反映であり、応力再配分が進行した現時点では、断層帯全体の断層帯の半分がこうしたアスペリティによって支えられていると推察したのである。この仮説とそこから得られた推察を検証するため、前論文（松村（2007a）では、推定アスペリティでb値が低下したことMatsumura（2006）と同じ仮説の検証が高まり、高さが低いもの高木（2005）、高木（2005）、過去の東海地震において短周期地震波の生発源が近くにあったこと[神田・他（2004）]、おおよそ2000年の三宅島イベントに端を発して浜名湖下に発生したとされるスロースリップの進展が推定アスペリティに収束したように見えることがKobayashi et al.（2005）の5つの事例を基にした推定した。なおこれらはいずれも現地の事例証拠のレベルでしかなく、決定的な証拠要因としては不十分の感があった。

スロースリップの開始後、東京大学地震研究所、静岡大学、東海大学を中心とする大学連合は、静岡県中西部にGPS観測点を設置し、国土地理院のGEONETをあわせて精密観測網を構築した[内海・他（2005）]。内海・他（2007）は、この観測網によるスロースリップ期間中に得られたデータを解析し、この間に進行した歪の詳細分布を描き出した。本稿では、地震活動変化からの導かれた既に推定した結果と上記の地殻変動観測による結果とは照合することで、スロースリップを契機として浮び上がった次期東海地震のアスペリティの存在を検証する。

§2. 活性化域と地表の面積歪

Fig. 1は、前報[松村（2007a）]から引用した断層下盤（フィリピン海スラブ内）における地震活動の変化図である。手法の詳細については前報など[松村（2002）、松村（2007a）]に委ねるが、概観は次のとおりである。まず、東海地域の断層帯を推定される70 km×80 kmの長方形エリアにおいてプレート境界よりも下方にあるM 1.5以上の地震を抽出し、「断層下盘のスラブ内地震」のファイルを作成する。簡単なクラスター分析法によりクラスター地震を除去した後、全体をスロースリップに関わる調査期間（1999年8月～2005年4月の69か月間）とそれ以前の基準期間（1986年6月～1996年5月の10年間）に分割する。対象エリア内に11 km角の枠を置き、それを1 km間隔で数を算出しながら地震発生率の比を求め、最後にGMT[Wessel and Smith（1995）]を用いて発生確率のカラーバー表示で描き出したものがFig. 1である。青は「静穏化域」、赤は「活性化域」に対応する。松村（2007a）では、「断層上盤の地殻内地震」に対しても同様の図を描いており、上下それぞれの活性化域がペアで示されている。Fig. 1のA、B、C付近に3つの主なアスペリティが存在すると結論した。細かく言えば、上下盤ペアの位置は互に似ており、両者に挟まれた部分にアスペリティの中心があるだろうと推察したわけではないが、上盤の活動は不均一かつ面積的にも狭小である。この推察を既報にあてはめるのは実際的ではない、本稿では、Fig. 1に示した下盤の活性化域をそのまま推定アスペリティの位置とみなすこととする。

一方、前節で紹介したとおり、静岡県中西部におけるGPS観測からプレート境界面上の固有の不均質状況を観察させる解析結果が得られている[内海（2007）]。Fig. 2は、解析に使用したGPS観測網と面積歪を求めるために円の観測点間の距離の円の観測点間の距離を示す。本領域に構成された観測網から地震活動領域内にありと確認された2点を除外し、さらに面密度の偏りを避けるためなどの理由で十数点を除外した結果、最終的に選ばれた観測網は、GEONET31点および大学連合35点の合計66点で構成される。観測期間は2004年8月から2年の間で、これはスロースリップの終盤にあたる。この期間中の2004年4月には、紀伊半島南東沖地震が発生して変位にステップが生じ、さらにこれ以降の2年間には若干の余効変動が観察された。前者についてははステップ分解を除去し、後者については、後者のように余効変動による静岡県中西部の歪の存在は微小であり、結果が出ることがないことを確認した。解析手順の概要は次のとおりである。変動の始点として2004年8月7日か
Fig. 1. Map of the seismicity change for the lower layer inside the Philippine Sea slab. Seismicity rates of $M \geq 1.5$ and greater earthquakes from Aug. 1999 until Apr. 2005 were compared with the standard for the 10 years beginning in June 1986. Red (blue) corresponds to activation (quiescence). Numerals in the index are percentages. Three activated zones, A, B, and C, are clearly distinguishable and regarded as asperities.

Fig. 2. GPS network and an example of the triangle mesh pattern used for the areal strain analysis. The network is composed of GEONET by GSI (the Geographical Survey Institute; blue points) and stations by JUNCO (the Japanese University Consortium; red points). Seven varieties of the triangle mesh pattern are introduced, and those results are averaged in order to reduce the influence of irregular stations. Station TJ17 (circled) is annotated in the text.
Fig. 3. Distribution of areal strain during two years from Aug. 2004 [cited from Uchiumi (2007)]. The analyzed GPS data were provided from the network by GSI and JUNCO.

Fig. 3.

8.3. アスベリティモデル

本節では、地震活動変化に基づいて推定されたアスベリティによってGPS観測から得られた地表変動が説明できるか否かについて検証を試みる。

採用したモデルは次のとおりである。プレート境界として、N40°W の方向へ 12°のディップ角で傾き下がる平面を想定する。深さは、浜名湖で約 24 km、御前崎で約 14 kmである。この面上に、Fig. 4 で示したように 7 枚の断層面を置き、浜名湖の北西側に置いた最大の断層面 (60 km×40 km) はスロースリップに、残りの 6 枚をアスベリティに対応させる。Fig. 1 の活性化域 A, B, C には、これらで何枚かの断層面を割り当てる。天竜川河口付近に置いた個 (D) は、Fig. 1 でわずかに見える活動化域に対応させ新たに割り当てている。これにより、活性化域としてのやや不鮮明であるが、発震機構から推定された対応域の流線から、この付近に上下盤ブレートの強い固着があるとした考察 [松村 (2007b)] に基づいて設けたもので
ある。それぞれの断層面上には、観測時間に対応したスロースリップあるいはプレート間断層によるバックスリップに相当するディスロケーションを矢印のように与える。まず、プレート相対速度を30 mm/yearとみなし、アスベリティとして設定した6個の断層面上にN70°Wの方向に2年分60 mmのバックスリップを与える。設定したアスベリティの総面積は770 km²、剛性率を3.3×10¹⁰ Paとすると載荷モーメントは2年で1.5×10¹⁸ N⋅mとなる。このモデル設定は、スロースリップと同時期に震源域の大半で固着が外れ、フィリピン海プレートの沈み込みによるせん断力の増分は、すべアスベリティに載荷されているという仮説に基づいた。次に、浜名湖北西に置いたスロースリップ面に対して、N140°Eの方向に40 mmのフォワードスリップを与える。この場合、トータルのスロースリップ量はプレート間相対変位60 mmを足して100 mmと見積もったことになり、これはスロースリップによる解放モーメントを7.9×10¹⁸ N⋅mと見算した場合と、国土土地院の試算国土地理院(2007a)によると、スロースリップによる解放モーメントは2004年半ばからの2年間で約14×10¹⁸ N⋅mと見積もられるため、上記の設定量はやや小ぶりなもので、モデルとして不自然なものではない。

上記のモデルで地表での面積歪を求める結果が、Fig. 5である。モデル計算には気象研究所から提供を受けたプログラムパッケージMICAP-Gを使用した(Okada (1992), 内藤・吉川 (1999))。赤のコンターが伸張、青が収縮を示す。浜名湖の北西には当然ながら広大な膨張域(D3)が現れる。静岡県中西部における特徴は、大井川流域の東方に強い膨張域(D1)が出現し、これを取り囲んで収縮域の目玉が4個(C1, C2, C3, C4)生じたことであり、これらをGPSデータ解析結果と比較すると、位置がややずれるものの、膨張域(D1)はFig. 3の東側膨張

Fig. 4. Model for slow-slip and asperities. Arrows indicate dislocations at each fault plane. A forward-slip of 40 mm is assigned for the slow-slip beneath Lake Hamana. Six asperities are assigned a back-slip of 60 mm each; five of these are located at A, B, and C corresponding to the activated zones in Fig. 1. Asperity D is added as an extra. Every slip is driven on an assumed plate boundary dipping toward N40°W.

Fig. 5. Areal strain distribution derived from the model given in Fig. 4. A program package MICAP-G developed at the Meteorological Research Institute was utilized. Red (blue) indicates dilatation (contraction). The contour interval is 0.03 micro-strain.
域 (d1) と対応し、また、これを取り囲む収縮域の現れ方についても、双方のパラメータはよい対応を示す [(C1, C2)～(c1), (C3)～(c2, c3), (C4)～(c4)]. Fig. 3 の西側の膨張域 (d2) は、Fig. 5 には現れないが、図同でこの領域は 2 個の収縮域の鞍部になっていることが分る。浜名湖から北西県境に沿う膨張域も両図に共通 ([D3]～[D3]) である。

ただし、Fig. 3 で御前崎の西方に見える収縮域 (c5) は、Fig. 5 では再現できていない。以上をまとめると、モデル計算結果は、完全とは言えないものの、GPS データから解釈結果をほぼ再現する結果を示した。細かく言えば、個々の目玉の位置に若干のずれはあるが、このモデルが地震活動変化をのみ基にして設定されたものであることを考慮した時、両者の一致はむしろ驚くべき水準にあると言えよう。

定量的議論に立ち入れば、モデル計算による大井川東方膨張域（Fig. 5 の D1）のピーク値は +0.2 ì micro strain、また収縮域のピーク値は -0.2～-0.3 μ strain で、これらに対する GPS データ解析の結果（それぞれ、+0.5～+1 μ strain、および -1 μ strain）に比べればもともとファクトリ分けが小さい、こうした値を合わせ込むとすると、例えばモデルパラメータを調整することがなされた二つ目の最近の研究において、国土地理院に提案された断層モデル「国土地理院（2007a）」を用いて評価を行った結果、余効滑りそのものは全体で 27 × 10^18 N·m (Mw 6.9) とかなりの規模に達するものの、静岡県中西部に及ぼす面積は、+0.01～+0.03 μ strain の膨張に過ぎず、無視できるレベルであることがわかった。

84. 結果の信頼性について

ここで、第 2 篇で紹介したデータ解析結果の信頼性について検討する。ただし、ここで議論の個別の地点毎の誤差にまでは立ち入らず、手法に内在する不確定性の程度についての概説的な評価にとどめる。まず、Fig. 1 の地震活動変化については次のように評価する。地震極数は、1 km メッシュの格子点に置いた 11 km 角の枠ごとに数える。すなわち、どの枠の数を数えた地震極数の平均は 10 年間の基準期間で 250 個ある。地震発生がポアソン過程であると仮定すると、50 年間の調査期間中に平均極数（=13.2 個）に対する標準偏差は 8 個である。

したがってばらつきの割合は約 28% となる。一方、面積率解析結果に対しては次のように評価する。内海 (2007) では、Fig. 2 の観測値から抽出した 12 個について 2 年分の時系列解析を行っているが、基線長に対して見掛けもった標準偏差の重み付き平均値は約 4.2 mm ある。辺長歪解析では、始点・終点ともに約 20 個ずつのデータを用いたこと、また、期間の両端に誤差があることを考慮すると、平均観測点間距離 9 km に対する辺長歪に含まれる誤差は、4.2×1/√20 ÷ 2×(9×10)^3 = 2.1×10^-7 となる。一方、面積率の誤差は辺長歪の誤差の2倍である。さらに、異なる三角網について平面化操作を行ったことは、3 点で形成る基本三角形に対して新たに少なくとも外部 3 点の情報を寄与させることになり、誤差を最大で 1/√2 倍に縮減する効果をもつ期待できる。Fig. 3 に現れた面積変大さが±1 μ strain 程度であることから、最終的に誤差の割合は、(2.1×10^-7) ÷ (1/√2) = 0.52 すなわち約 30% と見積もられる。結果的に、面積率に対する誤差の割合も地震活動変化の場合と同程度であることがわかる。

誤差がこの程度とするとき、それは、結果の判定にどのくらいの影響を及ぼすだろうか、Fig. 1 における活性化域として発生帯が基準値の 130% 以上となる領域を取り上げる。この場合、ある場所での発生帯が基準レベルでなくても、統計的なふらつきによってもまた活性化域と判定されてしまう可能性が残る。平均的な発生帯に対しては、こうした誤差の確率は約 12% となる。Fig. 1 で実際に 130% を超えた領域の割合は約 17% であり、これは誤差の確率よりも有意に高い。ただし、これらの中にノイズが紛れ込んでいる確率も低いとは言えない。すなわち、Fig. 1 およびFig. 3 のバターンの異なりの部分がノイズによって形成されたという可能性を否定しきれないのである。しかししながら、ノイズによって個別に形成された 2 種の独立したバターンがたまたま一致する確率を見なならば、これもきわめて小さいと言えることができる。次のように単純化して考えてみよう。Fig. 1 の対象領域を 55 km × 77 km として、この中で 11 km 角の枠を 5 × 7 = 35 個、配置する。このうちの約 17%、すなわち 6 個の抽出をランダムに行う場合、2 個の試行での結果バターンが偶然一致する確率は、1/36 C_6^2 = 6.2×10^-7、きわめて小さい。実際の比較では、ピタリと一致することを要求するわけではない。多少のずれは許容している。そこで、各枠の縦横 1/2 幅でのずれを許すとすると、各抽出に対して 5 回、全部で 5^6 回だけ組み合わせが増えることになる (Fig. 6 を参照)。半分分のずれを許容したバターンマッピング（元の位置を含めて自由度を 5 倍に増す）、また同時に、対象となる枠の数も増幅するので、バターンの一致確率は、(1/36 C_6^2)×5^6=1.2×10^-4、と見積もられる。マッピングの条件を緩和するにつれこの数値はさらに大きくなるが、それでも十分に小さい値にとどまるものと予想される。Fig. 5 で行った照合の結果、双方のバターンの一致が
偶然とは思えないとした判断の根拠にはこのような数値上の根拠があったのである。

以上は、単純な誤差の評価であるが、結果の信頼性にはさらに別の問題がある。それは、個々の観測データの系統的なずれであり、これはGPS観測データに特有の問題とも言える。第2節で述べたように地滑りの影響を受けたと思われる観測点は除外したにもかかわらず、結果から見て問題と思われる観測点が残る。それは、Fig. 2中、円でマークした観測点TJ17（島田市立伊久美小学校）である。この点は山間部の谷間に位置し、一部の衛星が山の陰に入ることによる影響を受けたためか、その変位ベクトルは周辺の動きから幾分逸れて見える。結果から見て、Fig. 3の強い展張域(d1)は、TJ17の動きによって生み出された可能性が高い。面積歪算出の際、三角形の組み合わせにパリエーションを付して平均化した手法には、本来このような特定の観測点の影響を緩和する効果があったはずであるが、TJ17に関してはこれも効を奏していない。そこで、TJ17を通らないGEONETだけによる面積歪解析も行ってみた。結果は、Fig. 7のとおりであり、コントラストが弱まったものの基本的なパラメータはFig. 3と変わらない。d1の位置には弱いながらも変形のあることが見出される。結論として、d1における+1μstrainに達する展張が過大評価である可能性は残るが、ここがやはり変形域であることは認めることができる。

§5. 議論

Fig. 8. Strain pattern produced from a simple dislocation calculated by MICAP-G. A 20 km by 20 km horizontal plain fault is located at a depth of 20 km. (a) Areal strain. Red (blue) indicates dilatation (contraction). (b) Maximum shear strain. Values are represented on an arbitrary log-scale.
Fig. 9. Vertical displacements compared between model estimation and observation. Top: Result of modeling by MICAP-G. Red (blue) corresponds to upheaval (subsidence). The contour interval is 1 mm for 2 years. Bottom: Results from leveling by GSI from July 2004 until July 2006. The star points to the zero base. The contour interval is 0.5 cm for 1 year.
り、この2年間に限れば、準静的滑りを基準とした相対的back-slip量がプレート相対変位を超えるというモデル設定も必ずしも自然とは言えないである。このようにモデル調整によって変動量を合わせ込むことは一応可能である。ただしここには、プレート形状も含めた多くの不確定要素が関わってくると考えた。結局、解はユニクには求められないと考えられる。これは、インバージョン解析がユニクな解をもたらす保証がない、と述べたことと等価である。さらに言うならば、問題は計算手法自体にも及ぶ。MICAP-Gが基礎としたディスロケーションモデルは、断層近辺の変動パターンを評価するうえで、できるだけ便利な道具である一方、遠方での境界条件が必ずしも正しく反映されない、そのため結果が歪む場合がある。これがもっとも険わなるのは、沈み込み帯のアップディストーン変形に対してである。プレート周辺のアップディストーン上盤にあたるプレート部分は、地表における拘束が希薄なため、ほぼ原形を保つままプレート沈み込みに伴って引きこまれるだろうと想像される。これに対して、ディスロケーションモデルでは、トラフ変位がガラで二つの拘束があるため、モデル計算上の変位は、トラフ変位に近づくに従い実際のものからずれるということがあります（例えば、Wang (2004)、松村・岡田 (2006)）。モデル計算の絶対値が観測値と合わない状況に対応して、こういった要因も考慮する必要がある。

以上のこと、したがって意味での結果の整合性を求めるならば、より実際近いモデル設定は何とかという問題と同時に、境界条件および計算手法の妥当性についての新たな問題が浮上することになる。しかし、この問題をこれ以上検討することは本稿の趣旨を逸脱する。本研究の所期の目的は、地震活動変化から推定されたアスベリティの実在性を検証することにあった。そのためには、プタートの照合における整合性が第一義的な要請である。それはFig. 4のような単純化したもので十分に満足されたものと考える。

6. まとめ

本稿では、ストロースリップに連動した静岡県中西部の地震活動変化から推定されたアスベリティを地表で観測された面積積分と照合することによって、その存在の確からしさを検証した。

謝辞

本論文の查読に携わる多くの有意義な議論とコメントをいただいた勝保啓氏、および匿名の査読者に感謝の意を表します。この器密GPS観測は、地震予知計画事業の課題番号1414「東海地方の活動観測」や東京大学地震研究所一般共同研究2005-G-06、2006-G-08などで多くのGPS大学連合のメンバーによりなされたものであり、未公表のデータを使わせていただきました。関係者、ならびにGPS解析の指導と著者の間の仲介をいただいた島田誠一氏にあわせて謝意を表します。

文献

飯高・武田哲也・関川英美・村田補・岩崎貴重, 2005, 東海地域における地下深部の反射面, 月刊地球, 号外51, 81-85.

Kobayashi, A., A. Yoshida, T. Yamamoto, and H.
Takayama, 2005, Slow slip in the focal region of the anticipated Tokai earthquake following the seismo-volcanic event in the northern Izu Islands in 2000, Earth Planets Space, 57, 507–531.

国土地理院, 2007b, 水準測量による東海地方の上下変動 (1年毎), 地震防災対策強化地域判定会委員打合せ会資料, 2007年9月1日。

松原 誠・小原一成・笠原敬司, 2005, 東海地方における相互地震活動, 日本地震学会2005年度秋季大会講演予稿集, P099。

松村正三・岡田義光, 2006, Back-slip 解析 (Dislocation model) への疑問 (その2: 東海の固着帯), 日本地殻変動科学連合2006年大会, S207-011。

松村正三, 2007a, 東海地震のアスペリティの推定 (東海地域の地震活動変化: その4), 地震, 2, 59, 271–284。

松村正三, 2007b, 東海地域のTectonic Force Balance, 地震予知連絡会報, 77, 344–347。

松村正三, 2007c, 浜名湖下スリップリップに伴う静岡県西部の地震活動変化 (y 値変化), 地震予知連絡会報, 78, 245–246。

内藤宏人・吉川澄夫, 1999, 地殻変動解析支援プログラム MICAP-G の開発, 地震, 2, 52, 101–103。

著者・G. El-Fiky・宮崎真一・加藤照之, 2005, 水準データから推定した東海地方のすべり欠損分布, 日本地震学会2005年度秋季大会講演予稿集, P017。

岡田真和・長谷川 昭, 2005, DD モデラリィによる震源断層とアスペリティのイメージング, 地震予知連絡会報, 73, 624–628。

高橋雪江, 2005, 東海地方における地震のストレドロップ, 金沢大学大学院自然科学研究科生命・地球学専攻修士論文, 44 pp。

内田直希・松澤 暁・三浦 哲・平原 憲・長谷川 昭, 2007, 小縦り返し地震解析による宮城・福島県沖地球帯構築の摂動観測帯の精度に関する数値実験, 地震, 59, 287–295。

内海さや香・清水 勝子・長尾邦弘・福谷一孝・原田 昇・里村幹夫・加藤照之・熊元洋美・島田誠一・木賀 文昭・松島 健・長尾和哉・佐柳敬造・楠本成人, 2005, 東海の新働奇 GPS 観測網の構築, 地殻地球科学関連学会2005年合同大会, D080-003。

内海さや香・清水 勝子・里村幹夫・原田 昇・加藤照之・島田誠一・瀬 启清・佐柳敬造・長尾和哉, 2007, 東海地域の新働奇GPS観測(第2報), 日本地殻変動科学連合2007年大会, D107-P014。

内海さや香, 2007, 新働奇GPS観測による東海地域の歪解析, 静岡大学大学院理工学研究科生物地球環境科学専攻修士論文, 117 pp。

Yabuki, T. and M. Matsu'ura, 1992, Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip, Geophys. J. Int., 109, 363–375。

吉田典広, 2005, 東海地域で起きた地震の応力下降量の時空間分布, 気象研究所技術報告, 46, 46–52。