On the Well Water Decreases Preceded the Nankai Earthquake
—For the Prediction of Next Nankai Earthquake—

Yasuhiro Umeda, Kunihiro Shigetomi, Kensuke Onoue, Teruyuki Asada, Yoshinobu Hoso, Kazuo Kondo and Manabu Hashimoto
Research Center for Earthquake Prediction, D.P.R.I., Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

Shozo Kimura and Kazuo Kawatani
Kochi Earthquake Observatory, Faculty of Science, Kochi University, 2-17-47 Asakura Honmachi, Kochi 780-8073, Japan

Makoto Omura
Department of Environmental Science, Kochi Women’s University, 5-15 Eikokuji-cho, Kochi 780-8515, Japan
(Received January 5, 2009; Accepted January 8, 2010)

The water level in wells along the Pacific coast from the Kii peninsula to Shikoku showed remarkable decreases a few days before the 1946 Nankai earthquake. If pre-slip occurred on a deep portion of the earthquake fault, an uplift field would cover the area of the decreased well water. However, the expected uplift is only a few centimeters. Can the drastic changes of well water be explained by the slight uplift? By our field surveys, we confirmed that the wells were located in a small delta. The seawater permeates under the delta which faced the sea, and the fresh water floats on the seawater due to the different density. The Ghyben–Herzberg’ law shows that the depth between the horizon and the sea- and fresh water boundary is balanced to 40 times of the height between the horizon and fresh water head which is called groundwater table. This law implies that a slight uplift of the fresh water in a delta induces a 40 times drop of the sea- and fresh water...
boundary. In this case, much fresh water will be required to suspend the slight uplift of fresh water. If the new fresh water does not be supplied from the outside of delta, the much fresh water flows from the upper level of delta to take the new balance. Then, the well water on the upper level of the delta must decrease or dry up. The decrease of well water before the great earthquake was also confirmed at the time before the 1854 Nankai earthquake (M 8.4). The reproducibility of the decrease of well water caused by the pre-slip of Nankai earthquakes is fairly high. These understandings are effective for the prediction of the next great Nankai earthquake.

Key words: Earthquake prediction, Nankai earthquake, Decreased groundwater, Ghyben–Hersberg law

§1. はじめに
昭和南海地震（1946年12月21日，M 8.0）の前に、紀伊半島から四国の太平洋沿岸の一部で地下水位が大幅に低下したことを、当時の水路局、現在の海上保安庁海洋情報部が報告している（以下「水路要報」[水路局（1948）]）。宮本（1965）はこの報告の中に谷川が記載した南海地震の前地下水位異常があった16カ所を取り上げ、南海地震の出土の傾斜異常と地下水位異常との関係を指摘した。川辺（1991）は紀伊半島や四国で広く見られる変動時の地下水水圧の激減・停止といった異常を、南海地震の震源過程から期待される間隙水圧の低下によるものと考えた。また地震前地下水位異常があった領域は地震時を含むと同様な傾斜異常を伴っていたと指摘した。川辺（1991）は地震前地下水位異常があった領域は地震時を含むと同様な傾斜異常を伴っていたと指摘した。

Linde and Sacks（2002）は、南海地震の断層の深部延伸部でゆっくりした前駆的すべきを仮定した場合の地球での変動場の、地下水位の低下域と一致することを示した。橋本（2003）もSagiya and Thacher（1999）の断層モデルの一部を拡張することによって、地表での変動場と隆起域が地下水位低下域とほぼ一致することを示した。これららは前駆的すべきを仮定するならば、報告された地下水位異常の分布については説明可能なことを示している。しかしながら以下に述べるように、この現象に対するいくつかの疑問は未解決であった。

疑問の一つは、前駆的すべきから期待される地表近くのわずかな変形によって、地震前の大幅な井戸水の低下を説明できるか、という点である。地表変形に関して、Sato（1977）は潮位記録から宮崎県の細島に対して土佐清水が地震の1日半前から隆起し、地震直前で最大10 cm 程度隆起したことを示した。また小林・他（2002）は、やはり潮位記録から和歌山県浦多が2～3日前から沈降した可能性があること、その程度は地震直前で最大10 cm 程度だったことを示した。一方、水位の低下が認められたのは南海地震の数日～1週間前であり、その時期の隆起・沈降量は潮位記録から示唆される直前のそれらに比べてかななり小さかったと思われる。数 cm の隆起か沈降で、果たして井戸水が漏れるだろうか。

ふたつ目は、地震前に異常のあった地域として宮本（1965）は16カ所を取り上げたが、水路局が調査したのは160カ所以上にのぼる。地下水位異常が報告された地域は全国調査地域の1割以下であるうえ、井戸が多く使われていたのは大都市での報告が全くなく、さらに同じ数は報告時点で井戸が漏れたり水位が低下した井戸はごく一部であることも不思議である。

上述のような井戸水の低下を南海地震の前駆現象と認定するためには、わずかな変形に対して大幅な地下水位変化がどうして起こるのかというメカニズムの問題と、この現象が観測された地域のさらに一部でしかないという、少なくともふたつの大きな謎を解明する必要がある。これらの疑問が解決されるならば、紀伊半島から四国西部に至る広域に現れた井戸水低下が南海地震前のすべりに起因したことをより明確にすることが可能である。

また生活用水として使われる井戸水は、その水位に顕著な変化があった場合は目撃されやすい。この観点から昭和南海地震以前の地震についても地震前に井戸の水位が変化がなかったかどうかを調査した。これにより現象の再現性についてもある程度の明確を得ることができた。

§2. 現地調査
昭和南海地震の際の沿岸各地における地下水の状況は、地震被害や地変の調査とともに1947年1月～5月に水路局によって調べられたものである。地震に関連しては聞き取り調査が主であり、地震の前と後の状況が地域ごとに詳しく報告されている。その報告書（水路局，1948）の中から地震前の前地下水位変化があった場所をFig. 1に示した。井戸水が漏れたり低下したところが11カ所、隆れたところが3カ所、温泉の湧出量が低下したところが1カ所の計15カ所である。宮本（1965）が取り上げた徳島県那賀の異常は泡の発生であり、地下水位変化ではないと思われるので、同図では除いている。

Fig. 1の縦棒の長さは、地下水位異常が地震に先行し
た日数を示している。日本南西部の下田（Shimoda）や布（Nuno）では1週間前に一部の井戸水が涸れ、徳島県㈱浦（Tomonoura）では地震の5日ほど前に井戸水が著しく低下したと報告されている。報告の中で先行日数が最も短いのは和歌山県勝浦（Katsuura）の金波という温泉で、地震の6時間前に湧出量が著しく低下した。紀伊由良（Kii-Yura）は数日前、そのほか桜桜のないものは「地震前」とだけ報告されているところである。

異常が見られた井戸を確認するために、水路要報の記述に基づいて現地調査を行った。井戸水が涸れたり低下したのは、Fig. 1 に示された地区のすべての井戸ではなく、同一地域内でもごく限られた井戸であることわかった。その限られた井戸も、残念ながらほとんどが埋められたり使用不能になった。その一方、水路要報に記載されていないところでも地震前に井戸水が低下し、そのときも見つかり、徳島県図南の旅館の主人南三氏には地震の前日から井戸水が減っていく様子を早川に語ってもらった。南氏によると「当時の旅館では井戸水をポンプで汲み上げて使っていたが、地震の前日（12月20日）の昼ごろまで異常なかった。夕方から汲み上げにくくなり水を減していき、夜8時頃には汲み上げられなくなった。ポンプの故障と思い、宴会の後片付けのため夜12時過ぎた頃、近くの水路に Tales の共同井戸へと2人で水汲みに出かけた。普段はつるべに掛かれているロープで水汲みができたが、そのときはロープを2 mほど繋ぎ足してようやく汲み上げた。持ち帰ってみると水は渋っていて器を洗うにも困った」ということである。この証言から井戸水の低下は2 m程度だったこと、通常の水位から大幅に低下するまでに要した時間はおよそ8時間、長くても12時間程度だったことがわかる。円泡はFig. 1のTomonouraと同じ海陽町である。

生活用に使われている浅い井戸の水位は、降雨の多い時期と少ない浸水期とは大きな変化がある。和歌山県図南（Inami）の井戸について「町役場の所にある井戸は例年用の結果からすればどんなに水で満たされることはないのものか地震前に皆無となった」と水路要報に記載されていることから、地震前の水位低下は少なくとも水位の年周変化以上だったと推定される。井戸の水位の年周変化を知るために、現地調査と同時に、紀伊半島の一部を除く7つの地域の19の井戸で水位観測を行った。[伊致・他（2004）、尾上・他（2005）]水路要報に記載された印南の涸れた井戸は埋められていたが、その井戸から190 mほど離れた現在の井戸での観測例を Fig. 2 に示した。降雨によって数cmから1 m近くも上昇し、浸水期には大きく下がり、その差は2 mを超えることがわかる。このような変化、すなわちアンプレベル以上の大きな変化が地震前になければ、井戸水の異常には気づかないと思われる。

水位観測と同時に最寄りの水準点から各井戸まで水準
測量を行い、現在の水位の海拔高度を求めた [尾上・他 (2005)]。Fig. 2 の中で mean water level (0.96 m) は、1.5 年間の平均水位を海拔高度で示している。一方、調査で、地震前に井戸水が低下した場所は三方を山に囲まれた小さな三角州か、すく裏まで山が迫っている砂州のような場所 (Urado と Shimoda) であること、三角州に流れているのは小さな河川であることなど、疑問を解く鍵となる地形的な共通点が明らかになった。

3. 井戸水低下の疑問の解明

3.1 三角州における海水と淡水のバランス

海岸付近の三角州における地下の水の様子を模式的にFig. 3a に示した。三角州の多くは砂礫層であり、海水・淡水ともそれらの間隔に浸透している。淡水より密度の大きい海水は三角州の下では常に示したように斜めに浸み込んでおり、密度の小さい淡水はその上に乗っている。海岸付近で生活用水としての井戸水を使用する場合は、淡水水部分を一般に用いている、海水（塩水）と淡水（真水）の境界は内部境界 (interface) あるいは塩水・淡水境界とも呼ばれる。Fig. 3a は横に対して線を強調して描いているが、内部境界面と水準面のそれぞれ角度 (θ) は、後に述べる高知県佐賀（現：高知県黒潮町佐賀）の測定では 1°2' と非常に小さい、三角州の下に浸み込む海水の形が模の形状を示していることから、形状は「塩水くさび」とも呼ばれる。海岸にごく近いところでの海水・淡水境界は、海洋潮汐などによって擾乱を受け、双方の水が混じり合った海水領域があると思われるので、その部分は図では間隔の狭い点線で示している。

ある地点における地下水位の水面（horizon）からの高さを \(h \)、淡水の下降を示す内部境界面の水面からの深さを \(H \) とし、海水、淡水の密度をそれぞれ \(\rho_s, \rho_f \) とし、重力加速度を \(g \) とすると、Ghyben-Herzberg の法则 [例えば、ドミニコ・シュワルツ (1996)] より、

\[
\rho_s g (H + \Delta h) = \rho_f g (H + h)
\]

(1)

\[
H / h = \rho_f / (\rho_s - \rho_f)
\]

(2)

であり、\(\rho_s = 1.000, \rho_f = 1.025 \) とすると、(2) 式より

\[
H / h = 40
\]

(3)

となる。この式は水面より \(h \) だけ高い地下水位は、その \(40 \) 倍の深さ \((H) \) の深さとバランスをとっていることを示している。ちょうど水が水に浮かぶのに似てい る。

このように海水と淡水がバランスしている水の全体が、わずかに隆起した場合を考える (Fig. 3b)。図で間隔の深い点線と実線は、隆起前と後の地表、海底、地下水位、内部境界面をそれぞれ示している。隆起した場合も、常に海水と淡水のバランスが保たれるように、海水・淡水共に移動するので、再度バランスがとられて状態では、内部境界面 (interface) は A-B から A'-B' に移動する。隆起後、隆起前の地下水位は高くならないが、海岸線での地下水位は水平面に一致するので、地下水位の配分は少しだ大きくなる。地下水位面とバランスをとる内部境界面の配分も当然大きくなる。

水平面 (horizon) を基準にすると、ある地点での地下水位面は \(\Delta h \) 上昇し、内部境界面は \(\Delta H \) 下がっている。この状態での (1) と (2) 式は

\[
\rho_s g (H + \Delta H) = \rho_f g (H + h + \Delta h)
\]

(1′)

\[
(H + \Delta H) / (h + \Delta h) = \rho_f / (\rho_s - \rho_f)
\]

(2′)

となり、(2′) と (3) 式から

\[
\Delta H / \Delta h = 40
\]

(3′)

となる。 (3′) は地表の隆起によって地下水位が水平面より \(\Delta h \) 上昇するために、その \(40 \) 倍の深さ \((\Delta H) \) に相当する淡水が新たにバランスをとるために必要なことを示している。
3.2 一部の井戸水が漏れる理由

高知県佐賀では利水のために地下水調査が行われた（高知県令農業調査課, 1990）。その資料を基に三角州における地下水構造を Fig. 4a に模式的に示した。この図も Fig. 3 と同様、横スケールに対して縦が強調されていて、砂や礫からなるおよそ 5m の透水層は不圧地下水で満たされており、その下部は粘土の不透水層となっている。さらにその下に第 2 帯水層があるがこの図には描かれていない。汽水域がどこまで及んでいるかわからないが、図では模式的に適当な距離を境界面の左上方に細かい間隔の点線で示している。

内部境界面の下端は海岸より約 190m 付近に達している。この付近までが前節で述べた、つまり Fig. 3a で示した Ghyben–Herzberg の法則が成り立っている領域であり、水平面より上の淡水は、その高さの 40 倍の深さの淡水と釣り合っている。それよりも手先（Fig. 4a の B 点より右側）では、淡水の下支えをするのが海水面ではなく不透水層となるため、地下水位の勾配は急になることができる。実際に山手に向かって水位が高くなっていることは以下に述べるように、地下水の移動を考えるときに重要な点であり、浅田・他(2004)による佐賀での実測や、和歌山県印南における尾上・他 (2005) による実測によって確認されている。

地震前に三角州を含む土地全体がわずかに隆起了の場合 (Fig. 4b) を考え、内部境界面 A-B は海側に移動し、A’-B’ の領域で新たな海面・淡水のバランスがとられる。そのために必要な淡水は、図では ABB’A’ で囲まれた面積分と Fig. 3b で示した ΔH/ΔH ≈ 40 に相当する淡水であるが、前者が圧倒的に多い。これらの淡水は図に示すように大きな白抜き矢印で示したように山手の水位の高いほうから移動する。もしこの三角州以外（図の枠外）の淡水の供給がなければ、淡水が流出した後の部分は空発となる。その結果、図のように山手側の井戸（No. 4）は陥没し、No. 3 付近の井戸の水は大幅に低下する。空間になる部分の海側の端が図のようになる場合、No. 1 のうち B’ で示す点の実測に相当する場合で、No. 1 の井戸の低下はわずかである。「という現象が観察される。

このように三角州に他から淡水の供給がない場合は、わずかに地面の隆起によっても一部の井戸水は漏れる。あるいは大幅に低下することが説明できる。また同じ三角州であっても湿ったり、変化に気づかない井戸水があることも、移動する淡水が適当な量である場合には説明できることを示した。

以上の説明で重要な仮定のひとつは三角州を流れる河川からの淡水の供給がないという点であるが、1946 年南海地震後に井戸水が低下した、あるいは漏れたと報告された海域はいずれも三角洲をも含めた小さな三角州である。すなわち山が追い出ている砂州のような場所であり、小さな河川が小川程度のものでしかない。さらに地震の発生した 12 月は降雨の少ない時期であり、地下水
の供給源となる小さな河川では、水量も少なかったと思われる。逆に、もし大きな河川が近くにあり常に豊かな淡水が流れ出ていれば、Fig. 4b で大きな矢印で示したような淡水の海側への移動があっても、それと同時に河川から地下を通して、おそらく伏流水として淡水が供給されるため、井戸水が著しく減るという現象は現れにくい可能性がある。

高知市、徳島市、和歌山市といった大都市には、雨水期でも満れることのない大きな河川があり、伏流水などとして河川からの淡水供給が十分なされたため、この現象が起こらなかったと考えれば、なぜ大都市での地下水位低下の報告がなかったのかという疑問は解決する。また同じ集落でも満潤の井戸と満れなかった井戸があったことも、上述の説明で理解できる。もっともFig. 4 に示したような単純な地下水構造ではなく、実際の帯水層はもっと複雑な構造と思われる。透水性が不均質なことも考えられるので、山手側から順に満れは限らないだろう。

3.3 地震後の地下水位

南海地震の直後に降起したと推定される地域も地震時には沈降したところが多い、水路要報に記載された港湾の地震時の降起・沈降を参考にすると、Fig. 1 で示した 15カ所のうち地震時に明らかに降起したのは下田 (Shimoda), 布 (Nuno) の2カ所である。ヒンジライン付近の賀田 (Kada), 古泊 (Furudomari), 絹浦 (Tomonoura), 宍営 (Shishikui) の4カ所は不明であるが、残る9カ所は沈降である。

地震直後、沈降域の井戸には海水が入り生活用水として使用できなくなった。しかし多くの井戸では地震後、早いうちで数日、遅いところでは1カ月以上かかって水が満める状態に戻っている。地震後十分な時間が経てば、三角州を流れる河川や三角州の周辺からの水の供給によって帯水層に淡水が満たされたものと思われる。

南海地震による降起・沈降域は井戸水が満れた小さな三角州から見ればはるかに広域であり、三角州を含む周辺領域全体が降起・沈降したと思われる。このような場合、三角州とその上流の河川・湖沼（＝地下水位を定める境界条件）も同じように上昇・沈下したはずであり、一時的に低下した井戸の水位も、時間がたてば河川などの伏流水や周辺からの地下水の供給で満たされ、地表からの視点では地下水位は回復すると考えられる。地下水位回復の過程は水位面の勾配や透水係数などによるので、場所に依存すると思われるが、ここでは十分時間が経過し、河川などの水位と同じレベルになったときを考え、地震時に降起した場合をFig. 5a に、沈降した場合をFig. 5b に示した。
Fig. 5. Post-seismic hydrogeological structure. Figs. (a) and (b) show the uplift and subsided delta, respectively. Rough dotted lines show the situation before the uplift (a) and subsidence (b). After the enough time elapsed from the Nankai earthquake, fresh water is gradually supplied from outside of the delta. In case of uplift (a), the well water level, which is measured from the surface to the groundwater table, is deepened about the well No. 1 and No. 2. Most of the water level of well No. 3 and No. 4 does not change. In case of subsidence (b), the water level of most wells becomes shallow. Seawater is in the well of No. 1.

両図で内部境界面の移動量が異なるのは、図で表したAA’は海底の緩やかな勾配であるのに対して、AA’(Fig. 5b)は地震前のやや急勾配の陸地が海底になっていているためである。Fig. 3-5 では海底の勾配に対して沈降のそれを急に描いたため、そのような違いが生じたが、三角州や砂州の海岸付近では両者の勾配は大きく変わらないので、内部境界面の移動量も図に示したほど違わないとと思われる。作図に依存する部分もあるが、海岸に近いNo. 1 の井戸は隆起の場合は水位が大きく下がり、沈降の場合は海水が入ってしまう。Nos. 2-4 の井戸の水位は、隆起の場合は海底境界とほとんど変わらず、沈降の場合はいずれも上昇する。

このように海岸に近い井戸は別として、ほとんど井戸の水位は地震前とあまり変わらないが、変えても十分使用できる程度に回復する。このことは南海地震の前に同じ井戸で、同じ現象が起こる可能性を示しており、4.1 節で述べるように、この現象の再現性を検証するうえで重要なことである。

Ⅳ 4. 南海地震の予知に向けての検証
4.1 再現性の検証
前節までで、太平洋沿岸の小さな三角州で見られた昭和南海地震の前の井戸水の低下について、それを説明するひとつのメカニズムを提案した。このメカニズムによっていくつかの疑問が解かれるとともに、南海地震の前に断層深部において前駆的すべりがあったことを地下水位異常を通してより明確にすることができた。この現象は昭和南海地震のときだけ偶然起きた現象だったのだろうか、もしくそうだっただけ南海地震の予知につなげることは難しい。南海地震は繰り返し発生しているが、そのつど地震前に井戸水が満たされるかどうかという再現性の検証が必要不可欠である。

重富・他 (2005) は、1854年安政南海地震 (M 8.4) の前に井戸水が満たした事実を、高知県土佐清水市中浜と和歌山県広川の 2カ所で確認した。中浜の状況は池道之助 (1821-1872) によって書かれたもので、彼は井戸水が減ったことを記したうえ、井戸水が減るのは地震の前なので人々が気づかないことも記し、そのことを刻むモニュメントの図面も描いている。実際に作られたモニュメントは、現在も土佐清水市の市街地から中浜に至る峠の見晴らしの良いところにある。なお、中浜は Fig. 1 で布 (Nuno) の南 13 km に位置する。

広川では「いなむらの火」で有名な浜口剛隆 (1820-1885) と古沢庄右衛門 (1833-没年不詳) の両名がそれぞれ、地震前に井戸水が満たれたことを記している。
南海地震の際にも前駆的すべりとそれに伴う地下水位の変化が起こる可能性は高い。

4.2 海面変動はどのように影響するか

3.2 節では南海地震の前駆的すべりに起因する土地の隆起によって、ある特定の井戸の水位が大幅に低下することを述べたが、海岸付近の地下水位や内部境界面は海水位の変動によっても変化する。特に海洋潮汐は地震前の地殻の隆起量よりもはあるかに変動幅が大きく、三角州内と内部境界面の地下水位に大きな変動を引き起こしているはずで、3.2 節のモデルによれば、井戸の水位は毎日 2 回非常に大きく変化していることになる。

和歌山県印南では尾上・他 (2005) により既存の 3 カ所の井戸の水位を連続観測した。2004 年 6 月 1 日から 10 日までの 3 カ所の井戸の水位変化と、印南の北 37 km のところにある国土地理院南海 (Kainan) 遊覧所の潮位記録を Fig. 6 に示した。図中カッコの中の数値は海岸から各井戸までの距離を示している。海岸に近い井戸の水位は潮汐の影響が大きいが、海岸から陸側へ入るに従い、その影響は急に小さくなることがわかる。この図から 1 日潮に対する井戸の水位変化を読み取り、その比を海岸からの距離に対してプロットしたものが Fig. 7 である。井戸の水位に対する潮汐の効果は海岸から離れると急速に減衰することがわかる。浅田・他 (2004) は、高知県佐賀において海岸から山手に向かって、打ち込み式の井戸 4 本を設け、潮位と地下水位の同時観測を行った。潮汐が地下水位に及ぼす影響は海岸を離れるに従

田庄右衛門の記した「安政関門」には、地震の起こる日の朝の様子として、同じ地域でも漏水の井戸もあれば漏水ない井戸もあると具体的に書いている。浜口悟陵の手記「安政元年海嘯の実況」については三好 (1966) が地震学会誌で取り上げている。広川は Fig. 1 の紀伊由良 (Kii-Yura) の北東 10 km に位置する。

安政南海地震より前から、井戸水が減ると地震または津波が襲ってくるという言い伝えはあったようであるが、地震の前という限定した資料は我々の調査では見つかってはいない。地震の前とはっきり確認できたのは安政と昭和の 2 回の地震ではあるが、最近の 2 度の南海地震で、この現象が確認されたことの意味は大きい。次の

Fig. 6. A comparison of water levels at three well (Inami 1, Inami 2, Inami 3) and sea level (Kainan). Attached numerals indicate the distances from the sea shore.

Fig. 7. Attenuation curve of the ratio of well water level and diurnal constitution of ocean tide. The effect of ocean tide steeply decreases according to the distance from the sea.
い、やはり指数関数的に減衰することを示した。

内部境界面の潮汐に対する応答は直接観測されていないが、地下水位の観測結果から、海洋潮汐のように半日周期で振動する変化に対しては海面近く（Fig. 4a でA点近く）のみが大きく動き、底のほう（Fig. 4a でB点）は動かないのではないかと推定される。一方、地震に伴う隆起・沈降は永久変位に近い一方向の運動なので、内部境界面は時間をかけて移動（Fig. 4b でABからA′B′へ移動）するものと思われる。

今回観測できたのは1日潮ではあるが、ごく海域に近い（Figs. 3, 4 でNo. 1の）井戸を除けば海洋潮汐の地下水位に及ぼす影響は小さいことがわかった。さらに潮汐より長い時間の海水位変化が地下水位や内部境界面にどのように影響するかは今後の課題である。

§5. まとめと地震予知に向けた議論

5.1 わずかな変化とノイズレベル

太平洋岸沿いの三角州における地下水位の低下という現象を通じて、南西地震の前の前駆的すべきがある可能性を示した。南西地震予知に向け、前駆的すべきに伴う現象を可能な限り早い段階でキャッチする必要がある。1節でも述べたが、Sato（1977）は潮位記録から1946年南海地震前に、宮崎県筑前国に対して土佐清水が最大10 cm程度隆起したことを示した。橋本（2003）は、1944年東南海地震および1946年南海地震の前駆的すべきの断層モデルにおいて、本震のすべきの10%の前駆的すべきを示した場合、表での最大隆起長として5 cm程度を得ている。もちろん後者はモデル依存性があるが、両方とも本編直前に突異常隆起はそれほど大いきことは示していない。

Kato and Hirasawa（1999）は予測される南海地震の前駆的すべきが時間とともにどのように進行するかについてシミュレーション行った。南海地震の前駆的すべきも彼らのシミュレーション結果と同様、はじめはゆっくり進行し、さらに加速して本震に至る可能性がある。したがって本編の数日前に、前駆的すべきによる地表での変化をとらえるには、数mmから1 cm程度の隆起をとらえる必要がある。

浅い井戸の水位（不圧地下水の水位）は、2節でも述べたようにノイズが大きいが、地震前の水位低下にごく限られた所の極めてまれな井戸しか見られないので、予測のための観測に適した観測井戸は少ないだろう。一方、隆起量に対して大きく変化すると予測された三角州沿いの海水・淡水境界の観測は地震予知のために有効と思われる。しかしノイズがどのくらい大きいか、特に海面の長期変動が内部境界面に及ぼす影響についても観測データを得る必要がある。

5.2.2 次の南海地震の予知に向けて

本論では水路要報に記載された主に南海地震前の太平洋沿岸における（不圧地下水と考えられる）浅い地下水の水位低下について述べたが、南海地震に伴する温泉水や地表水の変化は広く内陸部でも観測されている（例えば、小泉（2004））。内陸部を含む広域の地下水位変化について川辺（1991）は、地盤の膨張（体積増加）に伴う間隙水圧の低下を考えたが、1節で述べた橋本（2003）のプレスリップモデルによれば、隆起部は膨張変形にもなっていることから、川辺の推定は適当と思われる。本論では南海地震の降下を井戸水位低下の原因としたが、隆起部が膨張と一致することから、膨張の影響もあったはずである。Line and Sacks（2002）は地表での隆起場が地下水位低下と一致することを指摘している。

ただ、温泉水のような（体積増加に敏感な）被圧地下水とは逆に、（体積増加に対して鈍感な）不圧地下水「小泉・他（2005）」を考えると沿岸部の浅い地下水の水位が大幅に低下したことを説明するには、本論での説明がもっともと考える。なお、被圧地下水と考えられる帷幕の温泉水が地下に共有した場合は、川辺（1991）の推定の妥当性を示す。

次の南海地震予知に向けてはノイズレベルが極めて小さい環境で、水位や歪計など高精度な観測を行うことが必要不可欠である。しばしば発生する遷移層のスプールの規模や拡大様式などと、地表での観測との対比関係をいろいろなケースについて取得しておくことが次の南海地震予知の基礎資料となる。現在段階ではどのようなケースが南海地震につながるのか、はっきりしたイメージを描くことはできないが、少なくとも最終段階では井戸水が涸れるほどの大きな変化が現れるだろうことと、安政と昭和の2回の南海地震が示している。

謝辞

この研究の出発点となったのは南海地震の圏調査報告書「水路要報」である。海上保安庁海洋情報部ではその写しをいただき、後には第五管区海上保安本部からその復刻版およびCDをいただいた。現地調査を行うにあたっては高知県および高知市の関係機関にご協力いただいた。特に高知県佐賀町（現・高知県高知町佐賀）では地下水に関する資料を提供いただいた。同町はじめ、和歌山県印南町、徳島県海部町（現：海陽町）では地下水観測でお世話になった。また調査で多くの方々に地下水に関する情報をいただいた。世話になった多くの方々に厚く御礼申し上げる。産業技術総合研究所の小泉尚義氏との議論では内容を深めることができた。重要なご指摘を
いただいたお二人の査読者にも感謝します。

文 献

小泉尚嗣・高橋 誠・松本和夫・佐藤 努・大谷 竜・北側有一, 2005, 水文学的手段による地震予知研究一地下水変化から地震前の地殻変動を検知する試み一, 地震 58, 247–258.

高知県幡多郡佐賀町, 2000, 伊与木川地下水調査図

尾上謙介・梅田康弘・重富國宏・浅田照行・細 善信・近藤和男, 2005, 昭和南海地震前に井水異常が報告された地点での地下水観測, 京都大学防災研究所年報, 48-B, 185–190.

水路局, 1948, 昭和 21 年南海大震調査報告 (地変及び被害編), 小向良七編, 水路要報 201 号, 1–117.