寄書

四国西部において 2005年に発生した小規模な長期的スロースリップ

気象庁気象研究所

A Small Scale Long-term Slow Slip Occurred in the Western Shikoku in 2005

Akio Kobayashi
Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
(Received December 17, 2009; Accepted April 5, 2010)

§1 はじめに


§2 データ解析

本研究では、国土地理院GEONETのGPS日座標値(F3解)を用いた。ここでは、プレートの沈み込みなどに伴う定常的な成分を除去して、非定常な成分に注目する。観測点ごとに定常的な変動をしていると考えられる期間から直線トレンド係数を求め、全期間からその係数を用いて定常成分を差し引いた。係数を求める際にこの地域の地震発生に影響した非定常な現象として、1997年と2003年の豊後水道長期的SSE、2001年3月24日豪雨地震(M6.7)、2004年9月5日紀伊半島南海沖の地震(M7.1, M7.4)を主に考慮した。年周変化については補正をしていない。また、2002~2003年に行われたGEONET観測点のアンテナ交換などに伴う人为的要因によるオフセットは、岩下・他 (2009)による方法を参考に、国土地理院ホームページで公開されているデータセットを用いて補正した。

四国西部を中心とする範囲の2005年1月から2006年1月までの、広島1(950403)を固定した非定常な変位成分をFig.1に示す。各点の変位は、期間の最初と最後の1カ月間の座標平均値の差から求めた (以下、変位の算出方法は同じ)。誤差範囲は標準偏差の3倍を示す。中国地方や四国東部など多くの観測点の水平変位は小さく、固定点を含むこれらの地域の観測点はこの1年間に定常的な変動をしていないことを示している。その中で、四国西部の観測点を中心に東方向の1cm弱の水平変位と、ばらつきの範囲をやや越える1cmほどの隆起が見られる。5mm以上の水平変位が見られた観測点のうち、3点の1997年から2009年9月ぶく東・南東冲の座標時系列をFig.2に示す。2005年前半を中心に主に南向きの変化が複数の観測点で同時に見られ、これらの変位是不適当な直線トレンドや、オフセットの除去によるものではないことがわかる。なお、2004年9月に主に東西成分に見られる西向きの変位は、紀伊半島南海沖の地震によるものである。

§3 すべり分布とその時間的変化

前節で明らかになった2005年に四国西部で見られる非定常変位の大きさは最大でも1cmほどと小さいが、距離の離れた複数の観測点で同時間に観測された各観測点のローカルな現象原因とは考えにくい。四国西部で見られた観測点の非定常な変位がプレート境界
Fig. 1. Unsteady (a) horizontal and (b) vertical displacements during the period from January 2005 to January 2006 relative to the station 950403 (labeled “Fixed”). Ellipses at the tips of arrows represent three times of the standard deviation.

上の長期的SSEによるものとして、そのすべり分布をインパジョンにより求めた。2003年7月から2004年7月の1年間の変位から推定した上盤側のすべり分布と、そのすべりからOkada (1992)の式により計算される上下変位をFig. 3(a)に、その後対象期間を半年ずつずらしながら求めた結果をFig. 3(b)から3(e)に示す。2004年9月を含む期間の変位については、紀伊半島南東沖の地震の影響を取り除くため、地震の前後10日間の座標平均値から求めた変位を差し引いた、すべり分布の解析で使用した小断層は8×10個とし、Fig. 3(c)に示した和倉・他 (2007) のプレート境界の深さ分布を参考に、各小断層の深さ、走向、傾斜角のパラメータを与え、小断層の大きさはおよそ29 km ×45 kmである。

Fig. 3(f)には2000年から2005年に発生した深部低周波地震の震央をプロットしている。すべり分布の解の推定誤差は、Fig. 3(a)の2003年7月から1年間の場合はすべりの最大価のある領域中心付近で5 mmほど、Fig. 3(d)の2005年1月から1年間の場合はすべりのある四国西部で2 mmほどである。

2003年長期的SSEについて得られたすべり分布は、Ozawa et al. (2007)により推定されたすべりの範囲、規模と矛盾していない。Fig. 3(a)に見られる2003年の長期的SSEのすべりが2004年7月からの1年間では見られず、2004年7月と2005年2月からの1年間では四国西部に小規模なすべりが推定されている。このすべりは2005年7月からの1年間では見られなくなっていることから、四国西部のすべりは2005年以前を中心に発生していたと考えられる。2005年のすべりの範囲は、2003年のすべり領域の東側に隣接しており、この地域の深部低周波微動の発生域より浅い南東側に位置している。

2003年の豊後水道長期的SSEのすべりと今回推定された2005年に四国西部の小さなすべりとの関係は、東海地域で見られたすべりの移動と似た現象と考えられる。

長期的SSEと短期的SSEとの関係についてHirose and Obara (2005) は、それまで1年周期で発生していた四国西部の深部低周波微動と短期的SSEの発生間隔が、2003年の豊後水道の長期的SSE発生時には2～3カ月になったとしている。しかしこれも四国西部の長期的SSEの規模が小さく周期も短いためか、その領域に隣接する範囲の深部低周波微動が活発になっている様子は見られない。
Fig. 2. Time series at selected GPS stations (locations are shown in Fig. 1). Shaded area represents the period of 2005. Red lines indicate calculated values based on the formulas of Okada (1992) from the slip distribution of Fig. 3(d).

Fig. 3. (a)-(e) Distribution of estimated slow slip and the vertical displacement calculated based on the formulas of Okada (1992) from the slip in each one-year interval. (f) Depth contour of the upper boundary of the Philippine Sea slab reported by Hirose et al. (2007) and distribution of low-frequency earthquake epicenters (green circles) from January 2000 to December 2005. The magnitudes shown in figures (a) and (d) are moment magnitudes calculated from slip distribution.
小林昭夫


国土地理院地観測センター, 2004, 電子基準点 1,200点の全国整備について, 国土地理院時報, 103, 2–51.


山本剛靖, 2005, 地殻変動解析支援プログラムの開発, 気象研究所技術報告, 46, 156–159.