地震 第2輯
Online ISSN : 1883-9029
Print ISSN : 0037-1114
ISSN-L : 0037-1114
論説
三重地震面再訪
——プレート収束の新しい描像としての“超沈み込み”——
瀬野 徹三
著者情報
ジャーナル フリー

2020 年 73 巻 p. 1-25

詳細
抄録

Subduction off Miyagi and Fukushima prefectures, northern Honshu, has been recognized as having a triple-planed structure of seismicity at the deep thrust zone in the 40-60 km depth range. This triple seismic zone is composed of thrust-type earthquakes, down-dip compressional and down-dip tensional earthquakes from top to bottom. At the time of the 2011 Tohoku-oki earthquake, peculiar phenomena such as radiation of short-period seismic waves and pre- and after- slow slips within the asperities of M7 class earthquakes were observed over this thrust zone west of the 2011 main rupture zone. Further to the south, where the Philippine Sea plate is subducting beneath Kanto, a triple seismic zone has also been recognized particularly under southwest Ibaraki prefecture. The thrust-type earthquakes at the top of the triple seismic zone off northern Honshu and beneath Kanto have been believed to be interplate events representing the relative motion between the overriding and subducting plates. I conclude that the thrust-type earthquakes beneath southwest Ibaraki prefecture are in fact within the crust of the subducting Philippine Sea slab, not at the surface because their slip vectors are different from the relative motion between the subducting and overriding plates. Therefore, there would be an aseismic plate boundary above the seismicity. I also show that the dip angles of the westerly dipping fault planes of the thrust-type earthquakes off Miyagi prefecture are smaller by 6° in average than the dip of the slab surface in this region, except for the six years prior to the Tohoku-oki earthquake, i.e. prior to 2006. Furthermore, the slip vectors coincide with the relative motion between the overriding and subducting plates only during this period. I infer that the topmost earthquakes of the triple seismic zone off Miyagi prefecture prior to 2006 are thus likely to be within the crust of the subducting plate. The slow slips before and after the Tohoku-oki earthquake would have occurred not within the asperities but along the aseismic plate interface, and the short-period seismic waves would have been radiated due to fractures within the crust associated with the overshooting rupture at the time of the Tohoku-oki earthquake. Many of the so-called repeating earthquakes at the topmost surface of the subducting plate would be in fact intra-crustal events within the slab. M9 earthquakes would interact with the triple seismic zone, not only mechanically, but also through fluid migration, because earthquakes in the triple seismic zone involve dehydration reaction. The irregularity of the occurrence of M9 earthquakes might be due to the inhomogeneous distribution of hydrated minerals in the incoming plate. The subduction zones having M9 earthquakes or under Kanto have a collisional character. I propose to term subduction having both a collisional character and a triple seismic zone as “super-subduction”. The relative motion between the plates is accommodated by the deformations of the crust of the subducting slab as a “plate boundary zone”. The viewpoint of “super-subduction” is necessary to understand earthquakes in subduction zones with a collisional character and dehydration reactions in the slab.

著者関連情報
© 2020 公益社団法人 日本地震学会
次の記事
feedback
Top