固体・液体の境界面における弾性波の反射 (I)
—SH波の反射—

東京大学理学部地球物理学教室 小口雄康
(昭和33年6月19日受理)

Reflection of Elastic Waves at a Solid-Fluid Boundary (I)
—On the Case of SH-Waves—

Yūkō Oguchi
Geophysical Institute, Faculty of Science, The University of Tokyo.
(Received June 19, 1958)

The reflection of elastic waves at a solid-solid boundary in elastic media has been treated by many authors. But there have been only a few papers on the reflection of the waves at a solid-viscous fluid boundary. In this paper, the author treated this problem in detail, comparing the solid-fluid reflection with the solid-solid one, especially with respect to amplitudes.

The results obtained are as follows; if the incident waves are of infinite coherence of sine-waves, the amplitude of the reflected waves is not affected so much by the density ratio \(\frac{\rho'}{\rho} \) as by the ratio \(\frac{\rho' v_p}{\rho v} \) and is twice as much as that at a solid-solid boundary, if the incident angle is small and the ratio \(\frac{\rho' v_p}{\rho v} \) is not close to unit. If the incident waves are of finite coherence of sine-waves with “zero-angle” incidence, the reflected waves are deformed slightly at their heads and tails, but the amplitudes are the same as in the above mentioned case.

§1. はじめに

地震の発生に関する T. Matuzawa の理論（1953）に従うと、地殻内部に作用した静水圧によって地殻が得たエネルギーが地震のエネルギーに変わると考えられる。このとき震源域には相当広範囲にわたって液体が存在するものと推定される。しかし、液体といつても完全流体に近いものよりも、むしろ粘性が非常に高いものと思われるが、いずれにしろ震源域には固体、液体の境界面ができることになり、このような境界面が弾性波にいろいろな影響を与えるものと考えられる。もしこのとき類似な現象が理論的に得られるならば実際にそれを見出すことも可能となりこれを調べる必要が生じる。特に最も簡単に調べられるものは、この境界面における弾性波の反射の問題であろう。すでにこれについて T. Matuzawa（1954）が垂直入射に近い場合の計算を行ない、固体、固体の境界面における反射とは異なった結果が得られている。ここではさらに詳しくこれを調べ、弾性波がいろいろな入射角で入射した場合の反射波について計算してみた。この結果を固体、固体の境界面における反射と比較し、かつ入射波が有
限の場合についても調べてみた。まず第1報ではSH波について考え、SV波及びP波については後報にゆずることにする。

§2. 反射率と透過率

問題を簡単にするために二次元とし、固体・液体の境界は平面で媒質はどちらも無限に拡がっているものとする。従って、実際の場合の厚さに比べて入射波の波長が比較的小さい場合に適用されると考えよう。

座標軸にはデカルト座標を用い、Fig. 1 のように境界面にx軸を、液体の方向にz軸をとると、SH波を考えているから変位はy成分だけをもつ。固体・液体内における変位、密度をそれぞれv, v'；ρ, ρ' とし、固体の剛性率、液体の粘性係数をそれぞれμ, ν とする。固体から境界面へ入射角θで入る波の変位をv_e, その反射波をv_r とすれば。

\[v = v_e + v_r \] (2.1)

となる。

運動方程式は次のように与えられる。

\[\rho \frac{\partial^2 v}{\partial t^2} = \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial z^2} \right) v \] （固体中） (2.2)

\[\rho' \frac{\partial^2 v'}{\partial t^2} = \nu \left(\frac{\partial^2 v'}{\partial x^2} + \frac{\partial^2 v'}{\partial z^2} \right) v' \] （液体中） (2.3)

変位を \(e^{ipt} \) に比例するものとして,

\[v_e = B_e e^{-ik(zx+mx)+ipt} \] (2.4)

\[v_r = B_r e^{-ik'(zx-mz)+ipt} \] (2.5)

\[v' = A e^{-ik'nz+ipt} \] (2.6)

とおくと、(2.6)のnはすぐにでも説明するように一般に復素数となり、また(2.4), (2.5)において,

\[l = \sin \theta, \quad m = \cos \theta \] (2.7)

である。波の進行方向及び減衰を考えると,

\[p > 0 \text{ のとき, } \quad k' > 0, \quad k > 0, \quad \Re(n) > 0, \quad \Im(n) > 0 \] (2.8)

となり、かつ次にあげる境界条件を満たすために,

\[k' = kl \] (2.9)

であることが必要である。

さて、境界条件としては境界面において変位・歪力が連続であることだけを考えればよい。これを式で示す次のようになる。
$z = 0$ で,

$$v_e + v_r = v'$$ \hspace{1cm} (2.10)

$$\mu \partial/\partial z (v_e + v_r) = \nu \partial/\partial z (v_e'/\partial t)$$ \hspace{1cm} (2.11)

(2.4), (2.5), (2.6) を (2.2), (2.3) 及び (2.10), (2.11) に代入して B_e, B_r, A の関係を求めるときのようになる。

$$B_r = (km\mu - vnp)/(km\mu + vnp) \cdot B_e$$ \hspace{1cm} (2.12)

$$A = 2km\mu/(km\mu + vnp) \cdot B_e$$

$$n = k'(1 + (\rho'p/vk^2)^2)^{1/4} \cdot e^{i\phi}$$ \hspace{1cm} (2.13)

$$\tan \phi = \rho'/k^2, \quad 0 \leq \phi \leq \pi/2$$ \hspace{1cm} (2.14)

$B_r/B_e, A/B_e$ はそれぞれ反射率, 透過率と考えられるので, $\rho, \rho'; \nu, \nu; \rho, \rho'$ をパラメータとする入射角 θ の関数となる。これを作ぞれぞれ $\lambda(\theta), \lambda'(\theta)$ とおくことにする。

$\lambda(\theta), \lambda'(\theta)$ をあきらかにすために, (2.8), (2.9) を参考にして実数 a, b を使って, $n = a + bi$ とおける簡単な計算の結果,

$$a = \frac{\sqrt{2}}{2} \cdot k \{ \sqrt{I^4 + \alpha^2 \beta^2} + l^2 \}^{1/2}$$ \hspace{1cm} (2.15)

$$b = \frac{\sqrt{2}}{2} \cdot k \{ \sqrt{I^4 + \alpha^2 \beta^2} - l^2 \}^{1/2}$$ \hspace{1cm} (2.16)

となる。

但し, $\alpha' = \rho'/\rho, \quad \beta' = \mu/\nu$ である。

(2.15), (2.16) 及び (2.7) を用いて (2.12) から,

$$\lambda = \frac{m\beta^2 - \sqrt{I^4 + \alpha^2 \beta^2} - \sqrt{2} \beta'm \{ \sqrt{I^4 + \alpha^2 \beta^2} - l^2 \}^{1/2}}{m\beta^2 + \sqrt{2} m\beta \{ \sqrt{I^4 + \alpha^2 \beta^2} + l^2 \}^{1/2} + \sqrt{I^4 + \alpha^2 \beta^2}}$$ \hspace{1cm} (2.17)

$$\lambda' = \frac{2m\beta^2 + \sqrt{2} m\beta \{ \sqrt{I^4 + \alpha^2 \beta^2} + l^2 \}^{1/2} - \sqrt{2} m\beta \{ \sqrt{I^4 + \alpha^2 \beta^2} - l^2 \}^{1/2}}{m\beta^2 + \sqrt{2} m\beta \{ \sqrt{I^4 + \alpha^2 \beta^2} + l^2 \}^{1/2} + \sqrt{I^4 + \alpha^2 \beta^2}}$$ \hspace{1cm} (2.18)

となって, λ, λ' は一般に複素数となる。これを次のようにおく。

$$\lambda \equiv Re^{i\varphi}, \quad \lambda' \equiv R'e^{-i\varphi}.$$ \hspace{1cm} (2.19)

(2.17), (2.18) から,

$$R = \sqrt{(1-\beta^2/m^2 + \alpha^4/m^4)} \left[1 + \frac{2}{m} \{ \sqrt{\alpha^4 + \beta^4 + \beta^2} \}^{1/2} + \frac{1}{m^2} \sqrt{\alpha^4 + \beta^4} \right]$$ \hspace{1cm} (2.20)

$$\tan \varphi = \frac{\sqrt{2}}{m} \cdot \{ \sqrt{\alpha^4 + \beta^4 + \beta^2} \}^{1/2} \left[1 - \frac{1}{m^2} \sqrt{\alpha^4 + \beta^4} \right].$$ \hspace{1cm} (2.21)

ここで,

$$1 - \frac{1}{m^2} \sqrt{\alpha^4 + \beta^4} > 0 \iff 0 < \varphi < \pi/2$$

$$1 - \frac{1}{m^2} \sqrt{\alpha^4 + \beta^4} < 0 \iff \pi/2 < \varphi < \pi$$

である。

$$R' = 2 \left[1 + \frac{\sqrt{2}}{m} \{ \sqrt{\alpha^4 + \beta^4 + \beta^2} \}^{1/2} + \frac{1}{m^2} \sqrt{\alpha^4 + \beta^4} \right]^{1/3}$$ \hspace{1cm} (2.22)
\[
\tan \varphi' = -\frac{1}{\sqrt{2} m} \left\{ \sqrt{\alpha'^2 + \beta'^2} \right\}^{1/2} \frac{1}{1 + \frac{1}{\sqrt{2} m}} \tag{2.23}
\]

である。

従って、一般に反射波は振幅が変化し、位相が入射波と比べてずれることもある。そして、\(R, R' \) は反射波、透過波の入射波に対する振幅比を表わし、\(\varphi, \varphi' \) は位相のずれを示している。これらは \(\rho'/\rho, \sqrt{\rho'^2 + \rho\mu} \) をパラメーターとして、入射角 \(\theta \) の関数となっている。

T. MATUZAWA (1954) は実際の地震波について考察した結果で、\(\sqrt{\rho'^2 + \rho\mu} \) の値として、

\[
10^{-2}, 10^{-1}, 1, 10, 10^2
\]

を用いている。ここでもこの値を用い、かつ \(\rho'/\rho \) の影響を調べるために、これが

0.6, 0.8, 1.0, 1.2, 1.4

の場合を考えて、\(R, R', \varphi, \varphi' \) の値を計算した。その結果は、Table I~II, Fig. 2~11 に示してある。但し \(\varphi' \) の値は特別に必要ではないから省略した。

§ 3. 固体・液体の境界面における反射

次に固体・液体の境界面における反射波を比較するために固体・液体の境界面における反射を調べておく。粘性液体の代りに密度、剛性率がそれぞれ \(\rho', \mu' \) の固体をおいたと考えるとよく知られているように反射率 (\(\lambda_s \), 透過率 (\(\lambda'_s \)) は次のように表わされる。

\[
\lambda_s = \left\{ 1 - \frac{\rho' c'/\rho c \cdot \sqrt{1-c^2/c'^2} \cdot \sqrt{1-l^2}}{1 + \frac{\rho' c'/\rho c \cdot \sqrt{1-c^2/c'^2}}{\sqrt{1-l^2}}} \right\} \left\{ 1 + \frac{\rho' c'/\rho c \cdot \sqrt{1-c^2/c'^2} \cdot \sqrt{1-l^2}}{\sqrt{1-l^2}} \right\}^{-1} \tag{3.1}
\]

\[
\lambda'_s = 2 \left\{ 1 + \frac{\rho' c'/\rho c \cdot \sqrt{1-c^2/c'^2} \cdot \sqrt{1-l^2}}{\sqrt{1-l^2}} \right\} \left\{ 1 + \frac{\rho' c'/\rho c \cdot \sqrt{1-c^2/c'^2} \cdot \sqrt{1-l^2}}{\sqrt{1-l^2}} \right\}^{-1} \tag{3.2}
\]

但し,

\[
c = \sqrt{\mu'/\rho}, \quad c' = \sqrt{\mu'/\rho'}, \quad l = \sin \theta
\]

である。

\(\lambda_s, \lambda'_s \) は \(c' < c \) のとき全反射の現象はなく実数であるが、\(c' > c \) のときは全反射をおこし、|\(\lambda_s | = 1 \) となる。全反射をおこさないときの \(\lambda_s, \lambda'_s \) を計算した結果を Table III Fig. 12~14 に示してある。但し、これらは \(\rho'/\rho, c'/c \) をパラメーターとして、\(\theta \) の関数なので、

\(\rho'/\rho \) として、

0.6, 1.0, 1.4

\(c'/c \) として、

0.5, 0.8, 1.2, 1.5

をとって求めてある。

<table>
<thead>
<tr>
<th>(\rho'/\rho)</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4~0.6</td>
<td>0.9866</td>
<td>0.9857</td>
<td>0.9858</td>
<td>0.9839</td>
<td>0.9814</td>
<td>0.9783</td>
<td>0.9721</td>
<td>0.9593</td>
<td>0.9219</td>
</tr>
</tbody>
</table>

Table I. Amplitude ratios of reflected waves at a solid-liquid boundary (R).
表II. 固体-液体の境界面における弾性波の反射 (I)

<table>
<thead>
<tr>
<th>α</th>
<th>10⁻²</th>
<th>10⁻¹</th>
<th>1</th>
<th>10²</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ' / ρ</td>
<td>θ</td>
<td>0</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1.4</td>
<td>0.868₆</td>
<td>0.866₇</td>
<td>0.86₀₇</td>
<td>0.84⁹₇</td>
</tr>
<tr>
<td>1.₂</td>
<td>0.8₆₆₆</td>
<td>0.₈₆₆₇</td>
<td>0.₈₆₀₇</td>
<td>0.₈₄⁹₇</td>
</tr>
<tr>
<td>1.₀</td>
<td>0.₈₆₆₇</td>
<td>0.₈₆₀₇</td>
<td>0.₈₄⁹₇</td>
<td>0.₈₃²₄</td>
</tr>
<tr>
<td>0.₈</td>
<td>0.₈₆₆₇</td>
<td>0.₈₆₀₇</td>
<td>0.₈₄⁹₇</td>
<td>0.₈₃²₄</td>
</tr>
<tr>
<td>0.₆</td>
<td>0.₈₆₆₇</td>
<td>0.₈₆₀₇</td>
<td>0.₈₄⁹₇</td>
<td>0.₈₃²₄</td>
</tr>
</tbody>
</table>

Table II. Amplitude ratios of transmitted waves at a solid-liquid boundary (R').

(1) α = 10⁻²

<table>
<thead>
<tr>
<th>ρ' / ρ</th>
<th>θ</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.₄ ~ 0.₆</td>
<td>0.₉₈₆₉</td>
<td>0.₉₉₉₉</td>
<td>0.₉₉₉₉</td>
<td>0.₉₉₉₉</td>
<td>0.₉₉₉₉</td>
<td>0.₉₉₉₉</td>
<td>0.₉₉₉₉</td>
<td>0.₉₉₉₉</td>
<td>0.₉₉₉₉</td>
<td>0.₉₉₉₉</td>
</tr>
</tbody>
</table>

(2) α = 10⁻¹
Table III. Amplitude ratios of reflected waves at a solid-solid boundary (R_s).

<table>
<thead>
<tr>
<th>ρ'/ρ</th>
<th>θ</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>1.082</td>
<td>1.072</td>
<td>1.041</td>
<td>0.989</td>
<td>0.913</td>
<td>0.811</td>
<td>0.768</td>
<td>0.678</td>
<td>0.507</td>
<td>0.287</td>
</tr>
<tr>
<td>1.2</td>
<td>1.082</td>
<td>1.072</td>
<td>1.039</td>
<td>0.983</td>
<td>0.903</td>
<td>0.796</td>
<td>0.661</td>
<td>0.491</td>
<td>0.277</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.082</td>
<td>1.070</td>
<td>1.034</td>
<td>0.972</td>
<td>0.885</td>
<td>0.772</td>
<td>0.632</td>
<td>0.464</td>
<td>0.258</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1.082</td>
<td>1.068</td>
<td>1.026</td>
<td>0.953</td>
<td>0.850</td>
<td>0.725</td>
<td>0.581</td>
<td>0.418</td>
<td>0.229</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>1.082</td>
<td>1.062</td>
<td>1.006</td>
<td>0.905</td>
<td>0.777</td>
<td>0.639</td>
<td>0.497</td>
<td>0.347</td>
<td>0.186</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ρ'/ρ</th>
<th>θ</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>0.186</td>
<td>0.135</td>
<td>0.073</td>
<td>0.047</td>
<td>0.032</td>
<td>0.023</td>
<td>0.016</td>
<td>0.010</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0.186</td>
<td>0.121</td>
<td>0.063</td>
<td>0.040</td>
<td>0.028</td>
<td>0.019</td>
<td>0.013</td>
<td>0.008</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0.186</td>
<td>0.104</td>
<td>0.053</td>
<td>0.034</td>
<td>0.022</td>
<td>0.014</td>
<td>0.011</td>
<td>0.007</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.186</td>
<td>0.086</td>
<td>0.041</td>
<td>0.027</td>
<td>0.018</td>
<td>0.013</td>
<td>0.009</td>
<td>0.005</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.186</td>
<td>0.085</td>
<td>0.032</td>
<td>0.020</td>
<td>0.015</td>
<td>0.010</td>
<td>0.006</td>
<td>0.004</td>
<td>0.002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ρ'/ρ</th>
<th>θ</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4</td>
<td>0.019</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0.011</td>
<td>0.010</td>
<td>0.009</td>
<td>0.008</td>
<td>0.007</td>
<td>0.006</td>
<td>0.005</td>
<td>0.004</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>-0.010</td>
<td>-0.007</td>
<td>-0.006</td>
<td>-0.005</td>
<td>-0.004</td>
<td>-0.003</td>
<td>-0.002</td>
<td>-0.001</td>
<td>-0.000</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>-0.005</td>
<td>-0.003</td>
<td>-0.002</td>
<td>-0.001</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>-0.002</td>
<td>-0.001</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td>-0.000</td>
<td></td>
</tr>
</tbody>
</table>

Table III. Amplitude ratios of reflected waves at a solid-solid boundary (R_s).

1. $\rho'/\rho = 0.6$

<table>
<thead>
<tr>
<th>ϵ'/ϵ</th>
<th>θ</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.538</td>
<td>0.534</td>
<td>0.521</td>
<td>0.497</td>
<td>0.459</td>
<td>0.397</td>
<td>0.298</td>
<td>0.127</td>
<td>-0.201</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.351</td>
<td>0.348</td>
<td>0.341</td>
<td>0.326</td>
<td>0.300</td>
<td>0.257</td>
<td>0.169</td>
<td>0.038</td>
<td>-0.277</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0.165</td>
<td>0.161</td>
<td>0.174</td>
<td>0.201</td>
<td>0.254</td>
<td>0.388</td>
<td>Total Reflection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>0.052</td>
<td>0.062</td>
<td>0.092</td>
<td>0.185</td>
<td>0.524</td>
<td>Total Reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. $\rho'/\rho = 1.0$

<table>
<thead>
<tr>
<th>ϵ'/ϵ</th>
<th>θ</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.333</td>
<td>0.328</td>
<td>0.312</td>
<td>0.282</td>
<td>0.236</td>
<td>0.163</td>
<td>0.051</td>
<td>-0.126</td>
<td>-0.429</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.111</td>
<td>0.108</td>
<td>0.099</td>
<td>0.083</td>
<td>0.055</td>
<td>0.008</td>
<td>-0.084</td>
<td>-0.214</td>
<td>-0.493</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>-0.009</td>
<td>-0.087</td>
<td>-0.076</td>
<td>-0.051</td>
<td>-0.016</td>
<td>0.152</td>
<td>Total Reflection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>-0.200</td>
<td>-0.190</td>
<td>-0.161</td>
<td>-0.067</td>
<td>0.316</td>
<td>Total Reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. $\rho'/\rho = 1.4$

<table>
<thead>
<tr>
<th>ϵ'/ϵ</th>
<th>θ</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.176</td>
<td>0.170</td>
<td>0.153</td>
<td>0.121</td>
<td>0.073</td>
<td>-0.003</td>
<td>-0.115</td>
<td>-0.287</td>
<td>-0.556</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>-0.056</td>
<td>-0.059</td>
<td>-0.068</td>
<td>-0.084</td>
<td>-0.112</td>
<td>-0.158</td>
<td>-0.247</td>
<td>-0.367</td>
<td>-0.609</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>-0.253</td>
<td>-0.250</td>
<td>-0.239</td>
<td>-0.216</td>
<td>-0.165</td>
<td>-0.014</td>
<td>Total Reflection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>-0.354</td>
<td>-0.346</td>
<td>-0.319</td>
<td>-0.231</td>
<td>0.158</td>
<td>Total Reflection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(3') Amplitude ratios of transmitted waves; $R_s' = R_s + 1$.

References:
Fig. 2. Amplitude ratios of reflected waves at a solid-liquid boundary for the case of $\rho'/\rho=1.4$.

Fig. 3. Amplitude ratios of reflected waves at a solid-liquid boundary for the case of $\rho'/\rho=1.2$.

Fig. 4. Amplitude ratios of reflected waves at a solid-liquid boundary for the case of $\rho'/\rho=1.0$.

Fig. 5. Amplitude ratios of reflected waves at a solid-liquid boundary for the case of $\rho'/\rho=0.8$.

Fig. 6. Amplitude ratios of reflected waves at a solid-liquid boundary for the case of $\rho'/\rho=0.6$.

Fig. 7. Phase lags of reflected waves at a solid-liquid boundary for the case of $\rho'/\rho=1.4$.
Fig. 8. Phase lags of reflected waves at a solid-liquid boundary for the case of $\rho'/\rho=1.2$.

Fig. 9. Phase lags of reflected waves at a solid-liquid boundary for the case of $\rho'/\rho=1.0$.

Fig. 10. Phase lags of reflected waves at a solid-liquid boundary for the case of $\rho'/\rho=0.8$.

Fig. 11. Phase lags of reflected waves at a solid-liquid boundary for the case of $\rho'/\rho=0.6$.

Fig. 12. Amplitude ratios of reflected waves at a solid-solid boundary for the case of $\rho'/\rho=0.6$. The signs $+$, $-$ show $\lambda_5>0$, $\lambda_5<0$, respectively, and T, total reflection.

Fig. 13. Amplitude ratios of reflected waves at a solid-solid boundary for the case of $\rho'/\rho=1.0$. The signs $+$, $-$ show $\lambda_5>0$, $\lambda_5<0$, respectively, and T, total reflection.
§ 4. 有限の入射波に対する反射波

(2.19) からわかるように反射波は入射波と比べて振幅が変化し、かつ位相がずれるから有限長の正弦波が入射した場合にどのように反射波が異なるか調べる必要がある。しかし一般にいろいろな入射角について調べることは計算が複雑になり、また § 5. でふれるが入射角が大きくなり大きくない場合が重要であるから、ここでは特に垂直入射について調べる。

また、同一の固体中を伝播する弾性波は変形しないことが知られているからここでは境界面（$z = 0$）における変位だけを考える。

さて、垂直入射（$\theta = 0$）の場合の反射率は、(2.12) に $l = 0, m = 1$ を代入して次のように求められる。

$$\lambda(p) = -\left(\sqrt{p} - \frac{1-i}{\sqrt{2}} \sigma \sqrt{p} + \frac{1-i}{\sqrt{2}} \sigma \right)$$ (4.1)

とし、

$$\sigma = \sqrt{\mu \rho / \nu \rho}$$ である。

また、後の計算の便宜のために $e^{i\omega t}$ に比例する変位の代わりに $e^{-i\omega t}$ に比例する変位を考えて、その反射率 $\lambda^*(p)$ を求めると、§ 2. と同様にして、

$$\lambda^*(p) = -\left(-i\sqrt{p} - \frac{1-i}{\sqrt{2}} \sigma \sqrt{-i\sqrt{p}} + \frac{1-i}{\sqrt{2}} \sigma \right)$$ (4.2)

となり、(4.1)，(4.2) を比べると、一般に $e^{i\omega t}$ に比例する変位をもつ波が入射するとき、その反射率において、

$$p > 0$$ ならば、 $p^{1/2}$ は $+\sqrt{p}$

$$p < 0$$ ならば、 $p^{1/2}$ は $-i\sqrt{-p}$

をとることがわかる。

いま、境界面 $z = 0$ に次のような入射波 $f(t)$ が入ったときの反射波を求める。
\[f(t) = B_0 \sin pt \quad -\delta < t < nT + \delta' \\
= 0 \quad t \leq -\delta, \ t > nT + \delta' \tag{4.4} \]

但し、\(T = 2\pi/\rho, \ 0 \leq \delta, \ \delta' < T, \)
\(n \) は正の整数である。

これは Fig. 15 のような形の入射波である。

\(f(t) \) による反射波 \(f_r(t) \) を調べるのであるが、

\[\sin pt = e^{ipt} - e^{-ipt}/2i \tag{4.5} \]

であるから、

\[f^{(1)}(t) = B_0 e^{ipt} \quad -\delta < t < nT + \delta' \\
= 0 \quad t \leq -\delta, \ t > nT + \delta' \]

が入射するときの反射波 \(f^{(1)}(t) \) を求めよう。入射波にフーリエ変換をおこなって、

\[f^{(1)}(t) = -\frac{iB_e}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ip\xi + il\xi} - e^{ip\xi - (nT + \delta')\xi}}{\xi - p} e^{i\xi t} \, d\xi \]

を得る。これは振幅

\[-\frac{iB_e}{2\pi} \cdot \frac{e^{-ip\xi + il\xi} - e^{ip\xi - (nT + \delta')\xi}}{\xi - p} \]

をもつ \(e^{it\xi} \) に比例する変位の重ね合わせと考えられるから、反射波は、

\[f^{(1)}(t) = -\frac{iB_e}{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ip\xi + il\xi} - e^{ip\xi - (nT + \delta')\xi}}{\xi - p} e^{i\xi t} \, d\xi \]

となる。ここで

\[\lambda(\xi) = -\left(\sqrt{\xi} \cdot \frac{1 - i}{\sqrt{2}} \sigma \left(\sqrt{\xi} + \frac{1 - i}{\sqrt{2}} \sigma \right) \right) \]

を示し、

\(\xi > 0 \) のとき、\(\sqrt{\xi} = +\sqrt{\xi} \)

\(\xi < 0 \) のとき、\(\sqrt{\xi} = -i\sqrt{-\xi} \)

をとるものとする。

いま、

\[g_1(t) = -\frac{iB_e}{2\pi} e^{-ip\delta} \int_{-\infty}^{\infty} \frac{\lambda(\xi) e^{i(\delta + t)\xi}}{\xi - p} \, d\xi \tag{4.6} \]

\[g_2(t) = -\frac{iB_e}{2\pi} e^{i\rho \delta'} \int_{-\infty}^{\infty} \frac{\lambda(\xi) e^{-i(nT + \delta' - 1)\xi}}{\xi - p} \, d\xi \tag{4.7} \]

とおけば、
\[f_c(t) = g_1(t) - g_2(t) \] (4.8)

g_1(t), g_2(t) の積分は複素微分によって求められるが、このとき \(\lambda(\xi) \) についてのリーマン面を考えておかなければならない。いま一般に複素変数 \(z \) については、

\[
\lambda(z) = \frac{\sqrt{z - \frac{1}{2}i\sigma}}{\sqrt{z + \frac{1}{2}i\sigma}}
\]

とおいてやると、これは \(z = 0, \infty \) に分岐点をもつ二値の無理函数であるから二枚のリーマン面を決めれば \(\sqrt{z} \) に対して \(z \) が一対一に対応する。

\[
\Re(z) > 0, \quad \Im(z) = 0 \quad \text{のとき,} \quad \sqrt{z} = +\sqrt{z}
\]

\[
\Re(z) < 0, \quad \Im(z) = 0 \quad \text{のとき,} \quad \sqrt{z} = -\sqrt{-z}
\]

であることを考えて \(z \) 面の分岐線を正の虚軸にとり、\(z \) 面の第一象と \(\sqrt{z} \) 面の半分との対応を Fig. 16 のように与える。ここで図の番号の等しい点が互に対応する。このとき、\(z \) 面の第一象で負の実軸に対して \(\sqrt{z} \) 面の負の虚軸が対応し、正の実軸に対して \(\sqrt{z} \) 面の正の実軸が対応する。また、\(z = -i\sigma^2 \) に対して \(\sqrt{z} = 1 - i\sqrt{2} \cdot \sigma \) が対応する。故に、\(z \) 面の第一象では、

\[
\sqrt{z} + 1 - i\sqrt{2} \cdot \sigma = 0
\]

であるから、\(\lambda(z) \) はここでは振動をもない。従って、\(\sqrt{z} = 1 - i\sqrt{2} \cdot \sigma \) なら \(\lambda(z) \) を次のように与えても差支えない。

\[
\lambda(z) = z - \sqrt{2} (1 - i\sigma \sqrt{z - i\sigma^2})
\]

これから (4.6)，(4.7) は次のようなになる。

\[
g_1(t) = -\frac{iBc}{2\pi} e^{-\operatorname{ip}t} \int_{-\infty}^{\infty} \frac{-\xi + \sqrt{2} (1 - i\sigma \xi)}{(\xi - \overline{\theta}) (\xi + i\sigma^2)} e^{(\xi + \iota t) \xi} \, d\xi
\]

\[
g_2(t) = -\frac{iBc}{2\pi} e^{\operatorname{ip}t} \int_{-\infty}^{\infty} \frac{-\xi + \sqrt{2} (1 - i\sigma \xi)}{(\xi - \overline{\theta}) (\xi + i\sigma^2)} e^{(\iota \xi + \xi \iota t) \xi} \, d\xi.
\]

従って、まず次の積分を求めることにする。

\[
I = \int_{-\infty}^{\infty} \frac{-w + \sqrt{2} (1 - i\sigma \sqrt{w + i\sigma^2})}{(\overline{\theta} - w) (\omega + i\sigma^2)} e^{itw} \, dw
\]

この \(w \) を複素変数 \(z \) でおきかえて適当な積分路を用いて \(I \) を求めることが出来る。被積分
函数の留数は、
\[
\text{Res}_{z=-p} = -\frac{p+\sqrt{2(1-i)s\sqrt{p+i\sigma^2}}}{{p+1i\sigma^2}} e^{ikp} = \lambda(p) e^{ikp}
\]
となり、\(z = -i\sigma^2 \) は極にならないことは前述の通りである。

(i) \(k > 0 \) の場合
積分路を Fig. 17 のようにとればよい。\(R \to \infty, \gamma \to 0 \) すれば積分で \(c_1, c_2, c_3 \) に関するものが残る。被積分函数を省略してかかると、
\[
\int_{c_1} + \int_{c_2} + \int_{c_3} = 0
\]

\[
\int_{c_1} = -\pi i \text{Res}_{z=-p} = -\pi i \lambda(p) e^{ikp}
\]

\[
\int_{c_2} = \int_{0}^{\infty} \frac{y+2s\sqrt{y-s^2}}{(y+ip) (y+i\sigma^2)} e^{-ky} \, dy
\]

\[
\int_{c_3} = \int_{0}^{\infty} \frac{y+2s\sqrt{y-s^2}}{(y+ip) (y+i\sigma^2)} e^{-ky} \, dy.
\]

これから、
\[
I = \pi i \lambda(p) e^{ikp} - 4oi \int_{0}^{\infty} \frac{V(y)}{(y+ip) (y+i\sigma^2)} e^{-ky} \, dy
\]

(ii) \(k < 0 \) の場合
積分路を Fig. 18 のようにとると、
\[
I = \int_{c_1} = -\pi i \lambda(p) e^{ikp}
\]
以上の結果を使って (4.10), (4.11) が次のように求められる。

\[
g_1(t) = B_\varepsilon \left[\frac{\lambda(p)}{2} e^{it\varepsilon} - \frac{2s}{2\pi} e^{-it\varepsilon} \right] \int_{0}^{\infty} V(y) \frac{e^{-(t+s)y}}{(y+ip) (y+i\sigma^2)} dy \quad (\delta + \varepsilon < 0)
\]

\[
= -\frac{B_\varepsilon}{2} \lambda(p) e^{it\varepsilon} \quad (\delta + \varepsilon < 0)
\]

\[
g_2(t) = \frac{B_\varepsilon}{2} \lambda(p) e^{it\varepsilon} - \frac{2s}{2\pi} B_\varepsilon e^{it\varepsilon} \int_{0}^{\infty} V(y) \frac{e^{-(t+s)y}}{(y+ip) (y+i\sigma^2)} dy \quad (t > nT + \delta')
\]

\[
= -\frac{B_\varepsilon}{2} \lambda(p) e^{it\varepsilon}. \quad (t < nT + \delta')
\]

(4.8) から,
\[
f_{t}^{x}(t) = 0 \quad (t < -\delta)
\]

Fig. 17.

Fig. 18.
固有・液体の境界面における弾性波の反射（1）

\[f(t) = B_0 e^{-ipt} - \frac{2a}{\pi} e^{-ipt} \int_0^t \frac{V(y)}{(y+i\sigma)(y+\sigma)} e^{-(i+\delta)y} dy \quad (-\delta < t < nT+\delta') \]

\[= B_0 \left[\frac{2a}{\pi} e^{-ipt} \int_0^t \frac{V(y)}{(y+i\sigma)(y+\sigma)} e^{-(i+\delta)y} dy \right] \quad (t > nT+\delta') \]

また,

\[f^{(2)}(t) = 0 \quad \text{ただし} \quad t < -\delta, \quad t > nT+\delta' \]

が入射するときの反射波 \(f^{(2)}(t) \) は同様に計算されて次のようになる。

\[f_r(t) = 0 \quad \text{（} t < -\delta \text{）} \]

\[= B_0 \left[\frac{2a}{\pi} e^{-ipt} \int_0^t \frac{V(y)}{(y+i\sigma)(y+\sigma)} e^{-(i+\delta)y} dy \right] \quad (-\delta < t < nT+\delta') \]

\[= B_0 \left[\frac{2a}{\pi} e^{-ipt} \int_0^t \frac{V(y)}{(y+i\sigma)(y+\sigma)} e^{-(i+\delta)y} dy \right] \quad (t > nT+\delta') \]

故に, \(f_r(t) = f_r^{(1)}(t) - f_r^{(2)}(t)/2i \) から, 反射波 \(f_r(t) \) は次のようになる。

\[f_r(t) = 0 \quad \text{（} t < -\delta \text{）} \quad (4.12 \text{a}) \]

\[= B_0 \left[R \sin(pt-\varphi) + \frac{2a}{\pi} \int_0^t \frac{V(y)}{(y+i\sigma)(y+\sigma)} e^{-(i+\delta)y} dy \right] \quad (-\delta < t < nT+\delta') \quad (4.12 \text{b}) \]

\[= B_0 \left[\frac{2a}{\pi} \int_0^t \frac{V(y)}{(y+i\sigma)(y+\sigma)} e^{-(i+\delta)y} dy \right] \quad (t > nT+\delta') \quad (4.12 \text{c}) \]

この式から, (i) 順列上の入射の場合はも反射波は無限遠の波の場合と同じ振幅比と位相差をもって反射する (4.12b 式の第一項がこれを示す), (ii) 波が入射し始めたとき, その位相差を差引くように変位が生じ, これが波形に変化を与える (4.15b 式の第二項がこれを示す), (iii) また波が終了したとき変位が非振動的になりまるとに戻る (4.12c 式の第二項がこれを示す), ことが示される。

\(n = 3, \ \delta = \delta' = 0 \) の場合について \(f_r(t) \) を数値計算した結果を Fig. 19 に示した。図において破線が入射波, 点線が反射波, 鎖線が (4.12b) 式の第二項を示し, 実線が全体の変位
Fig. 19. Displacements at the solid-fluid boundary caused by the finite coherence of incident sine-waves, and

\[V_1 = B_e \cdot \frac{2\pi}{\alpha} \int_0^\infty (y \sin p\theta + p \cos p\theta) \sqrt{y/(y^2 + p^2)} \cdot e^{-(t-\tau)y} \, dy. \]
を示している。なお軸軸は入射波の周期を単位とした時間を表わしている。
§ 5. おわりに
以上の計算の結果を総合すると次のような結論が得られる。即ち、
固体・液体の境界面における反射波の振幅は密度比 ρ'/ρ による影響は比較的小さくて、むしろ $\rho' v_p/\rho\mu$ の値によって大きく左右されると考えてよい。また、どのような場合においても反射波の振幅は入射波の振幅より大きくなることはないが、$\rho' v_p/\rho\mu$ を固定してみた場合、
振動数 ν が大きいとき、または小さいときはほぼ入射波の振幅に等しくなることがわかる。
しかもこのとき、入射角の大小はあまり影響していない。これを固体・固体の境界面の反射と
比較してみると、振幅比は固体・固体の場合においては全反射の近傍または入射角が 90° に近
い処を避ければ、ほぼ 1/2 以下である。従って、このとき振動数 ν が若干に大きい（または
小さい）ような正弦波の振幅は、固体・液体における反射が固体・固体の場合に比べて 2 倍前
後になるといえる。このことは、地殻内部において地震を発生するような変化がおこった場合に
S 波の反射を用いて、それを見出す可能性があることを示すといえよう。勿論火山などに
おいて内部の岩殻の存在をたしかめることにも適用され得る。
また、有限長の正弦波が入射するとき反射波は振幅、位相がずれて出てくるためその頭・尾
部に変形を生じる（4.16 式の積分で表わされた部分がそれを示している）。しかし実際に数値
計算を行なつてみるとその変形は一応長の数分の一以内におこつているので殆ど変形されな
いといつてもよいであろう。
終りにこの豊と終始御懇心に指導された松沢教授、有益な助言を与えられた坪井教授、及び
熱心に御後援下さつた松沢研究室の各位に感謝する。

参考文献
1954, S-Wellen an der Fest-Flüssigen Schichtgrenze, B. E. R. I., 32, 1~5.