循環型ロジスティクスの構造化

津久井 英喜

The first step for Structuring of “Sustainable Logistics"

by Hideki Tsuchi

Key Words: Logistics, Sustainability, Energy, Entropy, Structuring

1. わが国に於けるロジスティクスの諸問題

1.1 グランドデザインの見直し

この境界グランドデザインとは、ロジスティクスの
在り方などを前提として、将来を見据えた長期的、総合的な
構想をいう。

かつてわが国でも、その不足をより、環境を総合的
に分析し、課題を抽出・整理して物流革新の道を示す
とした試みがあった1)。

最新型では、米国環システム理論を活用したり3)、全
国調和に向けた自立・協調を誇る価値創造プロセス
として捉えること3)など、ロジスティクスのグランド
デザインをしようとする試みがある。

しかし、このような試みが学ぶと、公私の市場において
議論される機会はなく、したがって、「これは物資行政
に反映したり、政策のあり方を動かす」には至っていない。

1.2 21世紀のロジスティクスの課題

私はかねてより、わが国のロジスティクスが解決を迫
されている課題として次の4つを持といえた2)。

・高コスト構造
・グローバル的環境化
・公害など環境問題(外部不経済性)
・スキャラリストの不足
いずれも甲乙つけたい重要な課題である。

なかでもこれまでにって、資源効果ガス排出量の
削減、今年2月16日の「京都議定書」の発効にともな
って、わが国の運輸部門が最優先に取りくまざるを得な
くなった緊急の課題となっている。

2008年-2012年に至る予想基準で-6%にするという国家
目標が、すでに実現値の10%となって達成が危ぶまれて
いる中で、産業界では運輸部門だけがCO2排出量が増加
傾向にあるからである。

2. 従来型ロジスティクスの行き詰まり

2-1. 拡大化路線の限界

人類は有史以来、ここ100年間の人口増加から
面を避けて、拡大化することをもって“成長”あるいは“発
展”と考えてきた。

人類の歴史は、軍事力・経済力・政治力のいずれか、
もしくはそれらの複合による力によって、その基盤とな
るエネルギー資源を掌握中に取めた強者が弱者から資源を
取銭することを認め、が歴史によって、現在もなおその例
を知っている。

しかし、この地球という“閉じられた系”の中では人
類が利用可能なエネルギーの総量は有限であり、これから
と同様に“拡大をもって成長とする”パラダイムは維持
することは不可能となった。

2-2. “新評価尺度”と“求めるべき解

したがって、これまでのような“溝の水資源を前提とした
社会システム”から“限られた資源を最大限効果的
に使用することを前提にした社会システム”へとパラダイム
の転換をすることを求めるようだ。

これを伴って、活動の成果を評価するノミンもこれ
までの「効率／コスト」に代わる“新しいノミン”が
求められることになる。

と同時に、我々が取り組んでいる問題は“現時点での
最適解を求めるものではなく、将来にわたって持
続可能であるという条件の下での調和解”を探るもの
でなければならない。

3. 物資循環のネットワーク

時間・空間・物質のすべてを支配しているのが“エン
トレピの法則”である。

一定に集められた物質を発展することで時間とともに
拡散され、完極的には平衡状態に達することになり、こ
の時にエントロピーは最大化する。

生産拠点から最終消費地までの（正方向での）物資供
給は、“管理可能な範囲内”でエントロピーを増大させる
という活動にあたる。この供給の仕組み全体は、無数
のノード（中繼点）とリンク（輸送経路）で構成される
ネットワークである。

最終使用者／消費者の手に渡ってしまった物質を生産

NII-Electronic Library Service
拠点に集めるという（逆方向の）行為は、「エントロピーの法則」に逆らうのでの活動であるから、膨大なエネルギーの投入を必要とする。

人類が利用可能なエネルギーの総量は限られているため、物質循環のためにはエントロピーの増大を可能な限り抑制する「ネットワークの設計」が最重要課題となる。

製品の長寿命化、アップグレード設計、リマニュファクチャリング、輸送におけるミルクピーピー方式や共同配送の採用、重力・潮力・風力などの自然エネルギーの活用、ライフサイクルアセスメント（LCA）の導入など、すべてはこういった考え方に基づいてひとつの構造に取り組まれるべき方策である。

4. ロジスティクスの新しいミッション

循環型ロジスティクスは、調達に始まり、生産・流通を経て、使用者・消費者に至るまでの物質供給にとどまらない。

すなわち、使用後の物資の回収、再資源化に至る物質循環の全過程を、より効果的、より効率的にまわすためのシステムとそのマネジメント体系であり、循環型社会の形成とその維持のために貢献すべきものである。

したがって、これまでのような脅威では許されず、主役としての主体的な働きが期待されることになる。

参考文献

ロジスティクス関係に限定し、縮小文明、ネットワーク、エントロピー、複雑系（自己組織化、創出、…）、LCAなどについては省いた。

●ロジスティクス全般
1）経済企画庁『経済審議会流通研究委員会報告書』（経済企画庁、1972年）第Ⅲ節物流流通の革新
2）林木伸「わが国の物流の諸問題」（阿保堂司編著『ロジスティクスの基礎』p.51～60、税務経理協会、1998）
3）今田和夫著『日本のロジスティクス』（中央経済社、2002）
4）中田信哉著『ロジスティクス入門』（日本経済新聞社、2004）
5）鈴木誠運男編『バリューチェーン新たな魅力——ロジスティクスは成長する——』（流通研究社、2005）
6）Martin Christopher "Logistics and Supply Chain Management(2nd ed.)" FT Pitman Publishing, 1998
7）Donald J. Bowersox, David J. Closs, M. Bixby Cooper "Supply Chain Logistics Management Mc Graw Hill, 2002"

●リマニュファクチャリング関係
8）Rolf Steinhilper "Remanufacturing: The Ultimate Form of Recycling"（Fraunhofer IRB Verlag, 1998）
9）鷹橋輝男著『リマニュファクチャリング研究概論』(『Remanufacturing 2004 活動報告書』（鷹橋輝男編）リマニュファクチャリング研究会、2004）

●循環型ロジスティクス関係
10）J. R. Stock “Reverse Logistics”（CLM, 1992）
11）阿保堂司著『成功する共同物流——グリーンロジスティクスへの挑戦——』（生産性出版、1996）
12）J. R. Stock "Development and Implementation of Reverse Logistics Programs"（CLM, 1998）
13）J. R. Stock "Product Returns/Reverse Logistics in Warehousing"（WERC, 2004）

42