freak waveの出現確率に対する非線形形の影響について

非会員 田中光宏 *

On the effects of nonlinearity on the occurrence probability of freak waves

by Mitsuhiro Tanaka, Non-Member

Key Words: 非線形水面波, freak wave, 浪高分布, 直接数値シミュレーション

1. 緒言

大規模な海洋観測や人工衛星によるリモートセンシングがともたらす膨大なデータの活用によって海洋波の力学に含まれる種々の物理過程のモデル化が進められ、現在ではWAMをはじめとして全球規模でほぼ実用的な精度を有する数値波浪推算モデルが開発され漸次に活用されるまでに至っている。これらの数値波浪予測モデルはエネルギー平衡法に基づいて波浪場のエネルギースペクトルの時間的空間的変化を記述し、予測されたスペクトルから有義波高や有義周期、主波向きなどの重要な平均値・統計量を知ることができる。しかし、スペクトルには不確定な信頼性が欠如しており、と考えスペクトルを正確に予測することができず、そのスペクトルに対して実際にどの程度の波高の波がどの程度の確率で起こるのか、特に大波高を有する危険な波の出現頻度などを知る手段が現在のところ十分には整備されていない。

本研究は、海洋波浪の標準的スペクトルのひとつであるPierson-Moskowitz(P-M)スペクトルを有する多数の不規則波浪を生成し、それらの時間発展を非線形水面圧力波の基礎方程式にしたがって数値的に追跡することによって膨大な波高データを収集し、それに基づいて大波高の出現確率と波浪場の非線形性(エネルギー密度)の関係を調べることを目的とするものである。

2. 数値計算の手法と条件

水は非粘性、非圧縮性、流速場は満なしのボテンシャル流とする。流速場は、水平方向に1次元、鉛直方向に1次元の2次元である。したがって波の伝播は1次元の流速場の伝播である。自乗表面の変位をη(x,t),速度ポテンシャルをψ(x,z,t), η(x,z,t)の自由表面における値をψ(x,t)と書くと、波の時間発展を記述する基礎方程式は

\[\eta_t + 2(\eta_z) - 2w^2 \{ 1 + (n_z)^2 \} = 0, \quad (1) \]

\[\psi_t + gn + \frac{1}{2}(\psi_z)^2 - \frac{1}{2}w^2 \{ 1 + (n_z)^2 \} = 0, \quad (2) \]

となる。ここでW(x,t)は自由表面における鉛直水粒子速度を表す。\(\eta \)に対するLaplace方程式のDirichlet問題を解いてwを求める際には高次スペクトル法と呼ばれる高速高精度の手法を採用する。

Table 1 数値計算のパラメータ

<table>
<thead>
<tr>
<th>メッシュ点数</th>
<th>(n_x = 2^{15} = 4096)</th>
</tr>
</thead>
<tbody>
<tr>
<td>最大モード番号</td>
<td>(k_{\text{max}} = 682)</td>
</tr>
<tr>
<td>ビークのモード番号</td>
<td>(k_p = k_{\text{max}}/10 = 68)</td>
</tr>
<tr>
<td>初期スペクトル形</td>
<td>Pierson-Moskowitz</td>
</tr>
<tr>
<td>エネルギー密度</td>
<td>(E = 0.001 \sim 0.005)</td>
</tr>
<tr>
<td>非線形の次元</td>
<td>(M = 5)</td>
</tr>
</tbody>
</table>

\[
\Psi(\omega) = 5E \omega^{-5} \exp \left(\frac{-5}{4\omega^4} \right) \quad (3)
\]

を採用する。ここでEはエネルギー密度を表し、ほぼ\(E = \frac{H}{T_p} \)が成立し、\(H_{1/3} \approx 4\sqrt{E} \)を用いて、例えばビーケ周期8秒の場合に換算すると、E = 0.001～0.005は\(H_{1/3} = 2.0 \sim 4.5 \text{m} \)程度の現実的な海況に対応する。

初期波高のスペクトルにはP-Mスペクトル

3. 計算結果

前節で説明したように約100箇所において\(\eta \)の時系列を20周期において記録する、これにゼロ・ダウンクロス法を適用すると、1箇所の時系列から約25波の個々波が検出され、したがってある初期条件から出発した計算から約2500波の波高データが得られる。これを、各成分波の初期位相を与える乱数の変異が小となるスペクトルの

* 東海大学工学部

原稿受付 平成17年4月15日
春季講演会において講演 平成17年6月23日
©日本造船学会
3.1 波高分布
まず波高分布（波高的確率密度分布）$p(\xi)$、および超過確率 $P(\xi)$ を計算した。Rayleigh分布の場合、

$$p(\xi) = \frac{\xi}{\sigma_\eta^2} \exp\left(-\frac{\xi^2}{\sigma_\eta^2}\right), \quad P(\xi) = \exp\left(-\frac{\xi^2}{\sigma_\eta^2}\right)$$

となる。ここで $\xi = H/\sigma_\eta$、すなわち η の標準偏差で無次元化された波高を表す。図1はいろいろな E に対して得られた超過確率密度 $P(\xi)$ を示す。参考までにRayleigh分布に対して分岐およびすべての非線形項を消去した計算から得られた結果（図中では 'linear' と表示）もあわせて示した。これより、スペクトル形状が P-M スペクトルの場合、非線形性をまったく考慮しなくても確率的な要因だけで freak wave が出現することが分かる。ただしこの出現確率はほぼ 10,000 波に 1 波程度であり、Rayleigh分布から予想される値 $\exp(-8)$ の 1/5 も満たない。この結果は、線形不規則波動場に有限スペクトル幅の影響を取り入れると、freak wave を含め大波高波の出現確率が、Rayleigh分布から予測される値より小さくなるという以前から知られた結果と整合している。またこの図は、エネルギー密度 E を大きくした場合、大波高波の出現確率は単調に増大し、E の値によっては Rayleigh分布の予測は大波高波の出現確率をむしろ過小評価する危険な状態になる可能性があることも示している。

3.2 freak wave の出現確率

本研究では $H > 2H_{1/3}$ なる条件を満たす波を freak wave と定義する。図2は freak wave の出現確率、すなわち $H > 2H_{1/3}$ を満たす波の数の割合を E の関数として示したものである。E の増大とともに freak wave の出現確率も単調に増大していくことが明確に示している。

Fig. 1 超過確率密度関数 $P(\xi)$

Fig. 2 E の増大に伴う freak wave の割合の増大

一つの E の値に対してスペクトル的に等同な 1500 波の計算を行っているので、一つのケースに含まれる約 2500 波の中の最大波高 ξ_{max} に対する 1500 個の標本を手にすることはできる。紙数の関係でここでは示さないが、このようにして得られる ξ_{max} の分布や期待値も E とともに単調に増大するという結果が得られている。

4. 論文

$E = 0.005$ のあるケースで freak wave と判定された波が出現した時刻における空間波形の一例を図3に示す。図4はこの freak wave が出現したケースの $\eta(x, t)$ の時空間発展のイメージ図であり、横軸は x、縦軸は t である（時間は上から下へ進む）。図より波群速度で伝播する波群構造が明瞭に認められ、波群構造およびその盛衰の力学が freak wave など異常波の出現に深くかかわっていることが推測される。比較のために初期条件はこれと全く同じであるが、非線形項をすべて除外したシミュレーションから得られたイメージ図を図5に示す。両者を比較すると、非線形性は（1）群速度分散による波群の分散を抑制して波群構造を保持する、（2）波群の伝播速度に振幅依存性を導入することによって伝播速度の分布の幅を拡大し、その結果波群間の衝突とそれによるエネルギー集中の機会を増大する、という2点を通じて異常波の出現確率の増大に寄与しているように思われるが、これらの場合については今後の更なる検討が必要であろう。