農業気象
Online ISSN : 1881-0136
Print ISSN : 0021-8588
ISSN-L : 0021-8588
20 巻, 2 号
選択された号の論文の10件中1~10を表示しています
  • 今岡 円七
    1964 年 20 巻 2 号 p. 41-45
    発行日: 1964/11/05
    公開日: 2010/02/25
    ジャーナル フリー
    The following is the explanatory summary of the influeuce of the general wind upon down slope wind in the results of some observations made, in 1961, in a valley at Hakatajima (at 34°14′N. Lat., 133°05′E. Long.) in the Inland Sea of Seto.
    (1) When it is a clear night and there is no intervention of the general wind, the down slope wind blows regularly, but no systematic flowing time can be found.
    (2) It may be said that, when the general wind rises under the development of the down slope wind, inversion layer grows weak and the velocity of down slope wind falls, and that the relation of the velocities of both winds is generally shown by a negative linear function. When the velocity of the general wind reaches about 1.5m/s, the down slope wind stops.
    (3) It is interesting that the above-mentioned relation is also observed when the general wind blows into the rear of the down slope wind. But these facts must be examined after many observations have been made in much more lays of the land.
    (4) In clear nights during the period of these observations, the general wind grew strong between 2200 and 0200 hours in many cases. Accordingly the peak of the down slope wind appeared very frequently both before midnight and after midnight.
  • 谷 信輝
    1964 年 20 巻 2 号 p. 47-50
    発行日: 1964/11/05
    公開日: 2010/07/01
    ジャーナル フリー
    At first the following conditions are assumed,
    1. The diminished yield is caused by only direct wind damage.
    2. The storng wind is caused by only typhoon.
    3. The effect of shelter belt is only reduction of wind.
    The distructive power of typhoon F is considered as the kinematic energy of wind, and the ralation of
    F∝v3t
    is adopted. v is the wind speed and t is the duration of the wind. Between distructive power F and damage rate r the relation
    r∝Fn
    is recognized, indez n changes by crop sorts and conditions. According to Dr. TSUBOI's experiments in the wind tunnel, it is known that when the crop is strong n is 1, when it is weak n becomes 1/2.
    About main 30 typhoons which came to MIYAZAKI indicate that there exists the formula
    F∝Vmax4
    because large typhoon has high maximum wind speed Vmax and long duration t. Indeed the diminished yield of rice by typhoon is in proportion to Vmax2 (September when the rice plant is weakest period) and Vmax3 (for another month) (Fig. 2). This is easily explained by the above considerations.
    Now let us consider two types of shelter belt systems, one is dense, another is loose, of which characters are shown in table 1. Fig. 3 shows the difference in yield between with and without belt system under various conditions.
    Frequency distribution of typhoon in fhesouthern part of kyushu is shown in table 2. Under these conditions total gain or loss of yield for several years are shown in table 3. Dense system can protect crop against to strong wind but when strong typhoon does not come there, due to its large occupied area, the total yields decrease. We must pay attention to these facts.
  • 谷 信輝, 鈴木 義則
    1964 年 20 巻 2 号 p. 51-54
    発行日: 1964/11/05
    公開日: 2010/02/25
    ジャーナル フリー
    There is a storage for seed stocks of sweet potato in the Section of Upland farming, Kyushu Agricultural Experiment Station, it has 7m width, 9m depth, and 2.5m height, and is constructed by concrete blocks, the inner wall and ceilling are covered with heat insulators 5cm thick, and the floor is bare soil surface.
    Temperatures in the storage were measured by a recording thermometer from Nov. 1962 to Jan. 1964 the results are shown in table 1. It always keeps higher about 20°C than that in the open air. The temperature at the begining of 1963 fell down, and it was difficult to keep safe store of sweet potato roots, therefore, an electric heater was needed for some time.
    The difference in daily mean temperature between inside and outside Δθ is represented by
    Δθ=(QR+QE+G+X)τ/c,
    where QR is the respiration heat of sweet potato and it is estimated about 25cal/h.kg., QE is the heat by electric heater, G is the heat exchange to the ground, X is the residual term, τ is the time constant and c is the heat capacity of the storage.
    The heat balances of this equation are shown in table 3. When temperature changes regularly such as θt0+αt, the temperature difference is
    Δθt-Δθ0={(QR+QE+G+X)τ/c-ατ-Δθ0}(1-e-t/τ)
    The results are shown in table 4. X terms were obtained rather larger, they consist of heat by solar radiation and latent heat of evaporation or condensation, the former is estimated order of 200-300kcal/h, and the later changes by conditions, for example, when the open air temperature is rising, that is α>0, the heat which the storage recieved is spent on evaporation in the storage and X becomes smaller.
  • 阿部 亥三, 小野 清治, 東山 春紀
    1964 年 20 巻 2 号 p. 55-60
    発行日: 1964/11/05
    公開日: 2010/02/25
    ジャーナル フリー
    青森県の太平洋沿岸地帯の水田造成計画地域を対象として, その稲作立地条件について農業気象学的見地から調査を行なつた。その調査結果から本稿では次の諸点に論及した。
    (1) 青森県の水稲収量の増加傾向を見ると, 昭和30年以降の増加すう勢が顕著に認められる。調査対象地域は偏東風地帯なる故, 従前から冷害の危険性が強く低収量であつたが, 早熟・耐冷・多収性品種並びに保護苗代による健苗早植技術を主軸とする改善効果で, 昭和33年頃より急速に稲作収量が増加し, 稲作経営が著しく安定度を加えつつある。
    (2) 各種の試験並びに調査成績を参照して, 水田造成計画地域の収量目標を玄米重量で480~465kg (10a当り) と想定した。
    (3) 既往の試験成績を集約整理して, 冷害減収量の推定尺度を作成し, その推定尺度を応用して, 昭和28, 29年程度の冷害気象条件が出現した場合に現行技術によつても水田造成計画地域ではそれぞれ10~5%及び30~20%の減収率を示すことを推論した。
    (4) 既往の統計資料から, 昭和28, 29年程度の低温冷害年は, 前者は5年に1回, 後者は10年に1回程度の割合で出現していることが認められた。
  • (1) 敷藁量と効果との関係について
    村上 律雄
    1964 年 20 巻 2 号 p. 61-64
    発行日: 1964/11/05
    公開日: 2010/02/25
    ジャーナル フリー
    The effect of straw mulching on the water content in a surface soil layer was studied on the basis of the field measurement of soil moisture content. A plot with no straw and six plots covered by the wheat straw with the rate of 0.5, 1, 3, 6, 9 and 18kg/3.3m2 respectively, were prepared to clarify the effect of the straw mulching. The degree of protection porvided by the straw mulching against the evaporation from the soil surface has been determined and is expressed by
    E=S-A, e=(S-A)/M,
    where, S and A are the soil moisture content for the plots covered by straw and for the bare plot, respectively, M the amount (kg/3.3m2) of straw, and e is the soil moisture preservative efficiency of straw.
    It was found that the difference in the moisture content between the plot with straw mulch and the bare plot increased inversely with decreasing the water content for the bare plot. Figure 3 shows that the difference in the water content between the bare and mulching plots is in proportion to the amount of straw, with increasing tendency that becomes gradually weak with amount of straw. As presented in Fig. 3, the maximum value in the preservative efficiency of the straw was found at the plot covered by the straw of 3kg/3.3m and was 3.0mm/kg, straw. This fact seems to indicate that most effective amount of the straw mulching for preservating the soil moisture is between 3 and 9kg/3.3m.
  • 1964 年 20 巻 2 号 p. 64
    発行日: 1964/11/05
    公開日: 2010/02/25
    ジャーナル フリー
  • (1) 稚蚕期蚕座の温度特性と病蚕発生状態について
    西村 国男, 小森 三郎
    1964 年 20 巻 2 号 p. 65-68
    発行日: 1964/11/05
    公開日: 2010/02/25
    ジャーナル フリー
    蚕座内の温度分布と蚕座内部に潜入している蚕の病蚕発生頭数とその病源を調査した。その結果は次の通りである。
    1. 温度および湿度は蒸熱をひき起こす要因の一つである。蚕座が多湿状態である場合には, 蚕糞蚕沙の堆積がわずかで蚕座が薄くても蒸熱が発生するのに, 蚕座が乾燥状態では飼育適温の範囲内で, 蚕座の厚さが9cmに達しても蒸熱は殆んど認められなかつた。
    2. 箱飼育多湿蚕座における最高温部は蚕座表面から下へ2/3付近のところにあらわれる。箱飼育多湿蚕座において, 蚕座内部に発生した熱は蚕座表面温度を上昇させる。
    3. 蚕室内温度が蚕座各所の温度に影響を及ぼすに至るまでには時間を要し, 蚕座表面, 蚕座内部, 蚕座基底部の順である。蚕室内温度の日変化曲線と蚕座各所温度のそれらとの間には二回逆転期がある。夏秋蚕期, 稚蚕の覆蓋蚕座では, 異常高温が蚕座内部に出現し, それが翌日に持ち越されることがある。
    4. 稚蚕期中蚕座内部に潜入している蚕は壮蚕期に軟化病にかかり易く, ほとんどF型軟化病であつた。
  • 1964 年 20 巻 2 号 p. 68a
    発行日: 1964年
    公開日: 2010/02/25
    ジャーナル フリー
  • 1964 年 20 巻 2 号 p. 68b
    発行日: 1964年
    公開日: 2010/02/25
    ジャーナル フリー
  • 清水 茂
    1964 年 20 巻 2 号 p. 69-73
    発行日: 1964/11/05
    公開日: 2010/02/25
    ジャーナル フリー
feedback
Top