農業気象
Online ISSN : 1881-0136
Print ISSN : 0021-8588
ISSN-L : 0021-8588
23 巻, 1 号
選択された号の論文の10件中1~10を表示しています
  • 主として穴の温度性格
    鈴木 清太郎
    1967 年 23 巻 1 号 p. 1-5
    発行日: 1967/07/15
    公開日: 2010/02/25
    ジャーナル フリー
    深さ1m近い縦穴 (水平断面積72×53cm2, 東西に長い土穴) を関東ロームの地中に堀つて, 日中は厚硝子板で, 夜間は更に厚い発泡ポリスチロール板でカバーし, その内で冬期5℃までは耐えうる植物を人工保温の煩をはぶき栽培しうる成果をえた。穴中の気塊は夜間温湿度の点で上下2層よく混合されている。しかし日中は日射のためか上層高温である。穴温には年変化と日変化があり, 前者は穴を囲む周囲の地温に大きく支配され, 冬は寒冷で夏は暑い。後者は主として日射に原因する。穴中は一年を通じて6, 7月の梅雨期は僅少ながら低温で, そのほかの月は高温である。すなわち4月末から7月まで (晩春から初夏) は穴内外の温度は非常に接近するが秋から冬は穴は非常に暖かで外が零下11℃になつても穴は6℃に止まる。照度は冬至の低い高度の太陽でも光の一部を穴の上部に送るので, それが反射して一部同化作用を助ける。湿度は飽和に近い状態にあつて, 一日数時間は高湿度であり。残りの時間は飽和状態に近い。
  • 1967 年 23 巻 1 号 p. 6
    発行日: 1967/07/15
    公開日: 2010/02/25
    ジャーナル フリー
  • さぬきの夕なぎ
    日下部 正雄
    1967 年 23 巻 1 号 p. 7-10
    発行日: 1967/07/15
    公開日: 2010/02/25
    ジャーナル フリー
    むし暑さを表わす指数として不快指数がよく用いられるが, 不快指数は気温と濕度から計算したもので, 体感に大きく影響する風速を考慮していないから, 必ずしも体感とは一致しない。そこでむし暑さの指数として濕潤冷却強度を用いることを試みた。
    高松地方の夜間のむし暑さは, いわゆる“さぬきの夕なぎ”によるものであるが, この現象はむしろ夜なぎともいうべき夜間の無風状態である。そこで一般の検討をあおぐために, このような現象の起る原因と考えられるものを二三述べた。
    夜間のむし暑さを代表するものとしては, 21時の濕潤冷却強度が最も適当であることをみいだしたので, 6月から9月までの21時の濕潤冷却強度について旬別に若干の統計を行なつた。
  • 荒井 哲男
    1967 年 23 巻 1 号 p. 11-17
    発行日: 1967/07/15
    公開日: 2010/02/25
    ジャーナル フリー
    This paper deals theoretically with the error in the air thermometry now in use. In measuring the air temperature, various shelters are widely used, so the sheltered thermometry is the most important problem in it
    If the mean temperature of the inside wall of the shelter is θ*′, the air temperature inside the shelter
    θ0′, and the outer air temperature θ0, the error can be shown by
    θ*′-θ0′/δ=φ+1+(θ0′-θ0)
    where the first term on the right hand side is a function of φ, which is the ratio of the convective heat conduction to the radiative heat exchange at the thermometer sensor and varies with the wind velocity, reflectivity of thermal radiation of the sensor and its radius.
    The second term is the difference in air temperature between the inside and the outsiode of the shelter. The difference is due to
    1) Slagness of the sheltered thermometry, i, e., the thermometer sensor does not response to the outer air temperature but to that within the shelter.
    2) Effect of the short or nocturnal radiation on the thermometer in a shlter, i, e., the heat of radiation received by the outside wall of the shelter or that of radiation which comes through the rifts of the louvers influences upon the air temperature in the shelter.
    3) Effect of exchange of the heat at the wall of the shelter with that of air which comes into a shelter. The shelter is classified into two types from the point of view of the error. The first is the artifical ventilated shelter, in which the error of first term dominates. The second is the so-called Stevenson type made of louver, where the second terme is dominant.
    The errors of a standard, a large and a small Stevenson type shelter adopted by J M A are estimated and listed on Table 1. The errors in the measurement with the sunshade-type shelter, the twin-thermometer, the sling and the fine sensor thermometer are described briefly.
  • 柑橘蒸散の年変化について
    長谷場 徹也, 武智 修, 伊藤 代次郎
    1967 年 23 巻 1 号 p. 19-24
    発行日: 1967/07/15
    公開日: 2010/02/25
    ジャーナル フリー
    The transpiration from citrus leaves of potted Satsuma trees irrigated moderately was measured with the environmental elements from Octrber 1963 to October 1964. In addition, the evaporation from a horizontal circular wet plane surface was measured to be compared with the transpiration.
    An agrometeorological analysis of these data was made to clarify the annual change in transpiration and the efficiency of transpiration.
    In winter, the daily amount of the transpiration was about 0.015gr/cm2 day on clear days. From spring to summer transpiration became active and the daily amount reached about 0.14 gr/cm2 day on clear summer days.
    The transpiration rate showed the maximum in summer and the minimum in winter. The mean value of the transpiration rate in the daytime was about 2.8×10-6gr/cm2sec in summer and about 0.3×10-6gr/cm2sec in winter.
    The transpiration rate in the nighttime was very small for all seasons and its annual mean value was about 7×10-8gr/cm2sec.
    By a theoretical treatment, the transpiration rate from citrus leaves can be expressed by the following equation neglecting the terms of transfer by free convection,
    W≅(εs+2εc)D′fΔC,
    where W is the transpiration rate, εs and εc are, respectively, the efficiencies of the stomatal and of the cuticular transpirations, D′f is the coefficient of vapor transfer by forced convection from the leaf surface and ΔC is the mean difference in water vapor concentration between the leaf surface and the ambient air.
    The vapor transfer coefficient D′f under field conditions is confirmed to be proportional to the 4/5th power of wind velocity u, so that the following expression is obtained,
    W/u4/5ΔC∝εs+2εc.
    The calculated values of W/u4/5ΔC were small during the night and large in the daytime. On clear days except in midwinter, the transpiration efficiency showed an assymmetrical diurnal variation with respect to noon.
    Moreover, the diurnal variation of the ratio of the transpiration to the evaporation showed the similar assymmetrical course.
    The transpiration efficiency showed the minimumin in February and the maximum in July, and the efficiency in summer was about tenfold greater than that in winter.
  • 矢吹 万寿, 田村 順介, 織田 弥三郎, 今津 正
    1967 年 23 巻 1 号 p. 25-29
    発行日: 1967/07/15
    公開日: 2010/02/25
    ジャーナル フリー
    Dry matter production and plant density relationships of leaf beet plants were examined under a range of carbon dioxide concentrations from 0.03% to 0.6% CO2. Leaf beet plants (Beta vulgaris L, var. flavascens D. C.) were raised in gravel culture beds in polythin growth chambers from June 11 to July 10, 1965. The carbon dioxide concentrations in four chambers employed in this experiment were 0.03, 0.07, 0.15 and 0.6%, respectively. The each bed in the chambers was partitioned into four sections and the leaf beet plant with the height of 6 cm were transplanted in these sections at the densities of 50, 125, 292 and 500plants/m2, respectively.
    As can be seen in Fig. 1, the dry weight per unit area increased throughout the range of plant density values applied, although the initial increase is more rapid. The increase rate of the dry weight is larger for the chambers with high CO2 concentrations than for the chamber with usual CO2 concentration, indicating that the dry weight for the chamber with usual CO2 concentration is approximately constant in the range of plant densities over 200plants/m2 and LAI 6. On the other hand, the dry weight for the chamber with CO2 concentration of 0.6% did not show any saturating values throughout the range of plant density values applied.
    The value of absorptivity of incoming solar radiation of the plant canopy was measured for respective plots. The absorptivity decreases throughout the range of plant density values applied, although the initial decrease is more rapid (see Fig. 2.). In the range of plant density over 200plants/m2, no difference in the absorptivities was found among the chambers.
    The above results suggest that a principal cause for the plateau phenomenon in photosynthesis is not the limitation of absorption of incoming solar radiation by plant canopy, but the limitation of the supply of carbon dioxide from the atmosphere and soil to plant communities. This proposition is applicable to plant communities with foliage over LAI 6 under summer conditions in Japan.
  • 谷 信輝, 鈴木 義則
    1967 年 23 巻 1 号 p. 31-32
    発行日: 1967/07/15
    公開日: 2010/02/25
    ジャーナル フリー
  • 山本 良三
    1967 年 23 巻 1 号 p. 33-35
    発行日: 1967/07/15
    公開日: 2010/02/25
    ジャーナル フリー
  • 丸山 栄三
    1967 年 23 巻 1 号 p. 35-37
    発行日: 1967/07/15
    公開日: 2010/02/25
    ジャーナル フリー
  • 主としてガラス室について
    矢吹 万寿
    1967 年 23 巻 1 号 p. 39-46
    発行日: 1967/07/15
    公開日: 2010/02/25
    ジャーナル フリー
feedback
Top