ACTA HISTOCHEMICA ET CYTOCHEMICA
Online ISSN : 1347-5800
Print ISSN : 0044-5991
Search
OR
Browse
Search
Volume 44 , Issue 6
Showing 1-4 articles out of 4 articles from the selected issue
    • |<
    • <
    • 1
    • >
    • >|
REGULAR ARTICLE
  • Yumiko Shimamura, Takahiro Abe, Mitsuhiko Nakahira, Tetsuya Yoda, Shin ...
    Volume 44 (2011) Issue 6 Pages 239-245
    Released: December 28, 2011
    [Advance publication] Released: October 14, 2011
    JOURNALS FREE ACCESS
    The aim of this study was to investigate fascin and podoplanin expression in oral dysplasia and carcinoma in situ (CIS) immunohistochemically, and to evaluate their relationship to histopathological diagnosis based on architectural and cytological features. Fascin and podoplanin expression patterns were analyzed immunohistologically in 26 specimens of oral lesions, including benign disease (hyperplasia, papilloma, and others), intraepithelial neoplasia/borderline disease (dysplasia), and malignant disease (CIS, invasive squamous cell carcinoma). Fascin expression was scored into four original categories, and podoplanin expression was scored into five previously established categories. The relationship between the immunohistochemically determined scores of fascin and podoplanin expression and the architectural and cytological features in the hematoxylin-eosin-stained slides was analyzed statistically. The immunostaining scores for fascin and podoplanin were significantly higher in dysplasia and CIS than in benign disease (p=0.0011, p=0.00036), and they were significantly higher in dysplasia than in benign disease (p=0.0087, p=0.0032). In all cases of invasive SCC, fascin was expressed mainly in the cytoplasm of the tumor cells and fascin expression extended from the destruction of the basal layer of the epithelium to the upper layer of the epithelium and podoplanin was expressed in the cytoplasm and membrane of the tumor cells. This was the first report of up-regulation of fascin in oral dysplasia. Our results suggest that it would be helpful for improving the diagnostic accuracy of oral dysplasia and CIS to assess the expression of fascin and podoplanin immunohistochemically.
    View full abstract
    Download PDF (540K)
  • Mei Hann Lee, Linyen Lin, Ilma Equilibrina, Susumu Uchiyama, Sachihiro ...
    Volume 44 (2011) Issue 6 Pages 247-258
    Released: December 28, 2011
    [Advance publication] Released: October 22, 2011
    JOURNALS FREE ACCESS
    ASURA (PHB2) knockdown has been known to cause premature loss of sister chromatid cohesion, and disrupt the localization of several outer plate proteins to the kinetochore. As a result, cells are arrested at mitotic phase and chromosomes fail to congress to the metaphase plate. In this study, we further clarified the mechanism underlying ASURA function on chromosome congression. Interestingly, ASURA is not specifically localized at the kinetochore during mitotic phase, unlike other kinetochore proteins which construct the kinetochore. Electron microscopy (EM) observation showed that ASURA is required for proper kinetochore formation. By the partial depletion of ASURA, kinetochore maturation is impaired, and kinetochores showing fibrillar balls without a well-defined outer plates are often observed. Moreover, even when the outer plates of kinetochores are constructed, most showed structures stretched and/or distended from the centromere, which resembled premature kinetochores at prometaphase, indicating that the constructed kinetochore plates are less rigid against tension derived from kinetochore microtubule pulling forces. We concluded that ASURA is an essential protein for complete kinetochore development, although ASURA is not being integrated to the kinetochore. These results highlight the uniqueness of ASURA as a kinetochore protein.
    View full abstract
    Download PDF (5010K)
  • Toshiyuki Matsuzaki, Yuki Inahata, Nobuhiko Sawai, Chun-Ying Yang, Mak ...
    Volume 44 (2011) Issue 6 Pages 259-266
    Released: December 28, 2011
    [Advance publication] Released: October 22, 2011
    JOURNALS FREE ACCESS
    The pituitary gland is composed of the adenohypophysis and neurohypophysis. The adenohypophysis contains endocrine cells, folliculo-stellate (FS) cells, and marginal layer cells, whereas the neurohypophysis mainly comprises axons and pituicytes. To understand the molecular nature of water transfer in the pituitary gland, we examined the immunohistochemical localization of the membrane water channels aquaporin-4 (AQP4) and AQP5 in rat tissue. Double immunofluorescence analysis of AQP4 and S100 protein, a known marker for FS cells, marginal layer cells, and pituicytes, clearly revealed that FS cells and marginal layer cells in the adenohypophysis and the pituicytes in pars nervosa are positive for AQP4. AQP5 was found to be localized at the apical membrane in some marginal layer cells surrounding the Rathke’s residual pouch, in which AQP4 was observed to be localized on the basolateral membranes. These results suggest the following possibilities: 1) FS cells especially require water for their functions and 2) transepithelial water transfer could occur between the lumen of Rathke’s residual pouch and the interstitial fluid in the adenohypophysis through the AQP4 and AQP5 channels in the marginal layer cells.
    View full abstract
    Download PDF (1888K)
  • Ikuko Amano, Yuri Imaizumi, Chiaki Kaji, Hiroshi Kojima, Yoshihiko Saw ...
    Volume 44 (2011) Issue 6 Pages 267-276
    Released: December 28, 2011
    [Advance publication] Released: November 05, 2011
    JOURNALS FREE ACCESS
    We have recently shown that salivary gland myoepithelial cells express podoplanin. Podoplanin indirectly binds the actin filament network which links classical cadherins. The study here is aimed to investigate the expression of podoplanin and cadherins on salivary gland myoepithelial cells and the changes in the aging cells using klotho-deficient (kl/kl) mice. The submandibular glands of kl/kl mouse lack granular ducts which express klotho in wild type mice, suggesting that klotho may be a gene responsible for granular duct development. Although aging resulted in growth suppression of myoepithelial cells because of the sparse distribution of the cells in kl/kl mouse salivary glands, the expression of podoplanin and E-cadherin was shown in aging myoepithelial cells. It is thought that podoplanin participates in the actin-E-cadherin networks which are maintained in aging myoepithelial cells. It was also shown that granular ducts were filled with P-cadherin, and that the P-cadherin amount was larger in the wild type mouse submandibular glands than in the sublingual and parotid glands of wild type mouse, and in the submandibular glands of kl/kl mouse. These findings suggest that the granular duct is an organ secreting soluble P-cadherin into the saliva.
    View full abstract
    Download PDF (2167K)
    • |<
    • <
    • 1
    • >
    • >|
feedback
Top