ACTA HISTOCHEMICA ET CYTOCHEMICA
Online ISSN : 1347-5800
Print ISSN : 0044-5991
ISSN-L : 0044-5991
Volume 55, Issue 5
Displaying 1-5 of 5 articles from this issue
REGULAR ARTICLE
  • Narantsog Choijookhuu, Yasuaki Shibata, Takumi Ishizuka, Yan Xu, Takeh ...
    Article type: Regular Article
    2022 Volume 55 Issue 5 Pages 119-128
    Published: October 28, 2022
    Released on J-STAGE: October 28, 2022
    Advance online publication: October 25, 2022
    JOURNAL OPEN ACCESS FULL-TEXT HTML

    In situ hybridization (ISH) is a powerful method for detecting specific RNAs at the cellular level. Although conventional ISH using hapten-labeled probes are useful for detecting multiple RNAs, the detection procedures are still complex and required longer time. Therefore, we introduced a new application of fluorescence resonance energy transfer (FRET)-based molecular beacon (MB) probes for ISH. MCF-7 cells and C57BL/6J mouse uterus were used for ISH. MB probes for ERα mRNA and 28S rRNA were labeled with Cy3/BHQ-2 and 6-FAM/DABCYL, and conventional probes were labeled with digoxigenin. Fluorescence measurements revealed that of more-rapid hybridization kinetics compared to conventional probes. In MCF-7 cells, 28S rRNA was detected in nucleolus and cytoplasm of all cells, whereas ERα mRNA was detected in some nucleolus. In the uterus, 28S rRNA was clearly detected using complementary MB probe, but there were no signals in control slides. Moreover, 28S rRNA was detected in all cells, whereas ERα mRNA was detected mainly in the epithelium. Fluorescence intensity of 28S rRNA was decreased significantly in 1 or 2 base-mismatched sequences, that indicates highly specific detection of target RNAs. In conclusion, the FRET-based MB probes are very useful for ISH, providing rapid hybridization, high sensitivity and specificity.

  • Yasuyoshi Mizutani, Kazuya Shiogama, Ken-ichi Inada, Toshiyuki Takeuch ...
    Article type: Regular Article
    2022 Volume 55 Issue 5 Pages 129-148
    Published: October 28, 2022
    Released on J-STAGE: October 28, 2022
    Advance online publication: October 25, 2022
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    The enzyme-labeled antigen method is an immunohistochemical technique detecting plasma cells producing specific antibodies in tissue sections. The probe is an antigen labeled with an enzyme or biotin. This immunohistochemical technique is appliable to frozen sections of paraformaldehyde (PFA)-fixed tissues, but it has been difficult to apply it to formalin-fixed, paraffin-embedded (FFPE) sections. In the current study, factors inactivating the antibody reactivity during the process of preparing FFPE sections were investigated. Lymph nodes of rats immunized with horseradish peroxidase (HRP) or a mixture of keyhole limpet hemocyanin/ovalbumin/bovine serum albumin were employed as experimental models. Plasma cells producing specific antibodies, visualized with HRP (as an antigen with enzymatic activity) or biotinylated proteins in 4% PFA-fixed frozen sections, significantly decreased in unbuffered 10% formalin-fixed frozen sections. The positive cells were further decreased by paraffin embedding following formalin fixation. In paraffin-embedded sections fixed in precipitating fixatives such as ethanol and acetone and those prepared with the AMeX method, the antigen-binding reactivity of antibodies was preserved. Fixation in periodate-lysine-paraformaldehyde and Zamboni solution also kept the antigen-binding reactivity in paraffin to some extent. In conclusion, formalin fixation and paraffin embedding were major causes inactivating antibodies. Precipitating fixatives could retain the antigen-binding reactivity of antibodies in paraffin-embedded sections.

  • Takahiko Kuroki, Susumu Takekoshi, Kanae Kitatani, Chikara Kato, Muneo ...
    Article type: Regular Article
    2022 Volume 55 Issue 5 Pages 149-157
    Published: October 28, 2022
    Released on J-STAGE: October 28, 2022
    Advance online publication: October 25, 2022
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    The purpose of this study was to determine the role of oxidized diacylglycerol (DAG) and the molecular mechanism underlying ischemia-reperfusion (I/R) injury in rat skin flaps. The protective effect of ebselen on the viability of rat skin flaps with I/R injury was investigated. Flaps were designed and raised in the left inguinal region. Then, a microvascular clamp was applied to the vascular pedicle and reperfused after 6 hr. After 7 days of I/R (I/R group), the skin flap survival area ratio was significantly reduced compared to the normal skin. The administration of ebselen significantly improved the ratio compared to the I/R group. The flap survival area ratio of the I/R + ebselen group was significantly improved compared to the I/R + vehicle group. In the I/R + ebselen group, the oxidized DAG content and intensity of phosphorylated PKCα and PKCδ were significantly lower compared to the I/R + vehicle group. Furthermore, the inflammatory response was suppressed in the I/R + ebselen group compared to the I/R + vehicle group. These results indicate that ebselen is useful as a preventive and therapeutic agent for skin flap necrosis caused by I/R, because of reduction and elimination of oxidized DAG.

  • Mina Ozawa, Yujiro Hattori, Shimpei Higo, Mai Otsuka, Keisuke Matsumot ...
    Article type: Regular Article
    2022 Volume 55 Issue 5 Pages 159-168
    Published: October 28, 2022
    Released on J-STAGE: October 28, 2022
    Advance online publication: October 25, 2022
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    Despite the physiological significance of ESR2, a lack of well-validated detection systems for ESR2 proteins has hindered progress in ESR2 research. Thus, recent identification of a specific anti-human ESR2 monoclonal antibody (PPZ0506) and its specific cross-reactivity against mouse and rat ESR2 proteins heightened momenta toward development of appropriate immunohistochemical detection systems for rodent ESR2 proteins. Building upon our previous optimization of ESR2 immunohistochemical detection in rats using PPZ0506, in this study, we further aimed to optimize mouse-on-mouse immunohistochemical detection using PPZ0506. Our assessment of several staining conditions using paraffin-embedded ovary sections revealed that intense heat-induced antigen retrieval, appropriate blocking, and appropriate antibody dilutions were necessary for optimization of mouse-on-mouse immunohistochemistry. Subsequently, we applied the optimized immunostaining method to determine expression profiles of mouse ESR2 proteins in peripheral tissues and brain subregions. Our analyses revealed more localized distribution of mouse ESR2 proteins than previously assumed. Moreover, comparison of these results with those obtained in humans and rats using PPZ0506 revealed interspecies differences in ESR2 expression. We expect that our optimized methodology for immunohistochemical staining of mouse ESR2 proteins will help researchers to solve multiple lines of controversial evidence concerning ESR2 expression.

  • Sana Inoue, Miki Imanishi, Ai Kanzaki, Atsumi Fujimoto, Marina Maeyama ...
    Article type: Regular Article
    2022 Volume 55 Issue 5 Pages 169-184
    Published: October 28, 2022
    Released on J-STAGE: October 28, 2022
    Advance online publication: October 25, 2022
    JOURNAL OPEN ACCESS FULL-TEXT HTML
    Supplementary material

    We investigated the role of cancer stem cells (CSCs) in a population of triple-negative breast cancer (TNBC) cells that are resistant to apoptosis. A human breast cancer cell population capable of inducing p53 expression with doxycycline (Dox) was created and used as an untreated control (UT). After the addition of Dox to UT for 5 days, the cell population reconstituted with cells showing resistance to apoptosis was named RE. Fluorescence-activated cell sorting (FACS) and immunostaining revealed that after the addition of Dox, the ratio of cells in the S and G2/M phases decreased in UT as apoptosis proceeded, but did not markedly change in apoptosis-resistant RE. CSC-like cells in RE exhibited a cell morphology with a larger ratio of the major/minor axis than UT. FACS showed that RE had a higher proportion of CSC-like cells and contained more CD44+CD24 mesenchymal CSCs than ALDH1A3+ epithelial-like CSCs. In a Matrigel invasion assay, UT was more likely to form a three-dimensional cell population, whereas RE exhibited a planar population, higher migration ability, and the up-regulated expression of epithelial-mesenchymal transition-related genes. These results provide insights into the mechanisms by which TNBC cells acquire treatment resistance at the time of recurrence.

feedback
Top