Archives of Histology and Cytology
Online ISSN : 1349-1717
Print ISSN : 0914-9465
ISSN-L : 0914-9465
Volume 73, Issue 2
Displaying 1-6 of 6 articles from this issue
Original articles
  • Koji Kawaguchi, Yu Katsuyama, Satoshi Kikkawa, Tomiyoshi Setsu, Toshio ...
    2010 Volume 73 Issue 2 Pages 65-72
    Published: 2010
    Released on J-STAGE: May 12, 2011
    JOURNAL FREE ACCESS
    The fluorescent dye PKH26, which binds mainly to the cell membrane, has long stability that enables the tracing of PKH26-labeled transplanted cells in host tissue. In the present study, we examined whether this fluorescent dye works as a retrograde or anterograde tracer to label neural networks within the central nervous system of adult and postnatal day 3 (P3) mice. A small injection of the dye into the medullospinal junction resulted in the retrograde labeling of corticospinal tract (CST) neurons in layer V of the sensory-motor cortex both in the adult mice and pups. Injection of the dye into the motor cortex of the P3 pups resulted in the anterograde labeling of CST fibers at a single fiber resolution level, although a similar injection of the dye into the motor cortex of the adult mice failed to stain CST fibers anterogradely. These results suggest that, while PKH26 works as a retrograde or anterograde tracer, anterograde labeling of the adult tracts can not be expected.
    Download PDF (620K)
  • Anzu Yamashita, Teruhito Kunimatsu, Kentaro Yamada, Akiko Kojo, Toshih ...
    2010 Volume 73 Issue 2 Pages 73-80
    Published: 2010
    Released on J-STAGE: May 12, 2011
    JOURNAL FREE ACCESS
    Using immunohistochemical methods, we investigated microglial profiles under normothermic ischemia and hypothermic ischemia using an anti-ionized calcium-binding adapter molecule 1 (Iba-1) antibody. In the early stages of ischemia-reperfusion, Iba-1-immunoreactive microglial cells under normothermic ischemia were characterized by swollen somata with short and thick processes, while fine long-branched processes in greater numbers were seen emanating from microglial somata under hypothermic ischemia. In animals subjected to hypothermic ischemia, immunoreactive microglial areas in the hippocampal CA1 sector were significantly increased after 5 and 8 h of reperfusion when compared with those under normothermic ischemia. In the dentate gyrus, an increase in the microglial area under hypothermic ischemia was already evident at 2 h after reperfusion; this increased level was maintained up to 8 h. Considering the various neuroprotective roles of hypothermic ischemia, the characteristic features of microglia under hypothermic ischemia may be associated with the formation of a neuroprotective environment.
    Download PDF (1199K)
  • Shin Kikuchi, Takafumi Ninomiya, Tomoyuki Kawamata, Noriko Ogasawara, ...
    2010 Volume 73 Issue 2 Pages 81-89
    Published: 2010
    Released on J-STAGE: May 12, 2011
    JOURNAL FREE ACCESS
    The airway epithelium is exposed to an acidic environment in certain conditions. The acid-sensing ion channel 2 (ASIC2) belongs to the epithelial amiloride-sensitive sodium channel and degenerin (ENaC/DEG) family and is expressed on cilia of the respiratory epithelium. The aim of this study was to detect the expression of ASIC2 in the nasal septum in the embryonic stage of the rat. ASIC2 expression was not observed in the primary cilium but was found in some cilia on embryonic day 17 (E17). After E18, all cilia showed ASIC2 immunoreactivity. RT-PCR analysis revealed that ASIC2b, a subtype of ASIC2, was expressed in the nasal septum while ASIC2a was not. Quantitative Real-time RT-PCR studies indicated that the expression level of ASIC2 mRNA was highest on E21, just before birth. These results imply that ASIC2 plays little part in the development of the nasal septum epithelium. On the other hand, ASIC2, especially ASIC2b, may function for the survival and retention of ciliated cells of the nasal septum against dynamic changes in the pH environment at birth.
    Download PDF (889K)
  • Maiko Haga, Sumio Yoshie
    2010 Volume 73 Issue 2 Pages 91-93
    Published: 2010
    Released on J-STAGE: May 12, 2011
    JOURNAL FREE ACCESS
    This study aimed to examine gustducin immunoreactivities when adopting various immunostaining conditions in rat vallate taste buds. The occurrence and intensity of the immunoreactivities exhibited specific patterns in accordance with the fixation time. The immunoreactions were localized to only taste hairs, the upper part of the taste bud, after short fixation periods but then to the cell-body cytoplasm excluding the taste hairs after long fixation periods. These immunohistochemical data suggest that the staining protocols, especially the fixation time, cause discrepancies in gustducin immunoreactivities.
    Download PDF (270K)
  • Yoko Bekku, Toshitaka Oohashi
    2010 Volume 73 Issue 2 Pages 95-102
    Published: 2010
    Released on J-STAGE: May 12, 2011
    JOURNAL FREE ACCESS
    Neurocan is a central nervous tissue-specific chondroitin sulfate proteoglycan of the lectican family. Mainly expressed during modeling and remodeling stages of this tissue, it is thought to play an important role via binding to various extracellular matrix and cellular components. In adults, neurocan expression is associated with the perineuronal net structures. This study shows the neurocan immunolocalization at the node of Ranvier in mouse central nervous tissues. The N-terminal fragment of neurocan (Ncan130) was the predominant form detected in the optic nerve. The expression of neurocan in the white matter of brain tissue and nerve tracts revealed differential expression profiles compared with those of versican V2 and brevican, other perinodal extracellular matrix molecules. Double immunolabeling for neurocan and a nodal marker, Bral1, or a paranodal marker, caspr, demonstrated that neurocan was localized at the node of Ranvier. Neurocan expression was found at many--not all--nodal regions, and neurocan-positive nodes outnumbered brevican-positive nodes. The nodal localization of neurocan was diminished in Bral1-deficient mice. Taken together, these findings indicate that neurocan contributes to the molecular heterogeneity of the perinodal matrix, and its nodal expression is dependent on Bral1.
    Download PDF (1123K)
  • Neill J. Turner, Scott A. Johnson, Stephen F. Badylak
    2010 Volume 73 Issue 2 Pages 103-111
    Published: 2010
    Released on J-STAGE: May 12, 2011
    JOURNAL FREE ACCESS
    Mice are common models for the study of mammalian wound healing. However, the array of available phenotypes suggests that significant differences likely exist in the normal wound healing response between different mouse strains. It is therefore essential to understand the normal healing response for each mouse strain, anatomic site, and mechanism of injury when investigating the potential effects of therapeutic interventions upon the healing response. The objective of the present study was to characterize and compare the morphologic changes that occur in both the MRL/MpJ and C57bl/6 mice strains during the first 14 days following amputation at the midpoint of the second phalanx. Our results identify noticeable temporal and spatial differences between the two strains, particularly in the expression of CD34+ and CD133+ progenitor cells, the re-epithelialization of the wound and deposition of type I and type III collagen. Unlike other selected tissues in which MRL/MpJ mice demonstrate a capacity to completely regenerate lost tissue, the responses observed in this model of digit healing did not translate into a greater capacity to regenerate lost structures. Both mouse strains show a similar healing response by day 14.
    Download PDF (1401K)
feedback
Top