Archivum histologicum japonicum
Print ISSN : 0004-0681
Volume 9, Issue 1
Displaying 1-12 of 12 articles from this issue
  • Hakushi YASUDA
    1955 Volume 9 Issue 1 Pages 1-9
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Durch die Wirkung der Ultrabeschallung werden die Milchkügelchen mit Viktoriablau bis zu einem gewissen Grade färbbar. Die Lipoide werden nämlich demaskiert. Wenn die Beschallung aber länger dauert, befreit sich das echte Fett in den Fettkügelchen in tropfiger Form. Zugleich werden die Milchkügelchen wieder mit Viktoriablau schwer färbbar, weil das Fett wahrscheinlich die Lipoide auflöst und in sich einschließt. Die von den Milchkügelchen in die umgebende Flüssigkeit ausgegangenen Fetttröpfchen mischen sich miteinander, um schließlich große Buttermassen zu bilden.
    Die trübe Schwellung des Cytoplasma von degenerierten Zellen und die Fettphanerose in degenerierten und veralterten Zellen erfolgen vermutlich im großen und ganzen durch ähnliche Vorgänge
    Download PDF (4374K)
  • Hozo KAWAMURA
    1955 Volume 9 Issue 1 Pages 11-19
    Published: August 20, 1955
    Released on J-STAGE: March 27, 2009
    JOURNAL FREE ACCESS
    1. Durch die Versetzung der mit Formalindampf fixierten Ziegenerythrocyten mit dem Antiserum wird die molekulare Dichte der Zellen erniedrigt. Dies beruht hauptsächlich auf der Auslösung des Hämoglobins aus den Zellen.
    2. Sowohl die formalinfixierten, als auch die frischen Soorpilze werden durch die Wirkung des Antiserums ultrastrukturell aufgelockert, vielleicht hauptsächlich dadurch, daß die Zellmembran zersetzt wird, daß ferner die inneren Zellsubstanzen herausgehen.
    Download PDF (1511K)
  • Morio KATO
    1955 Volume 9 Issue 1 Pages 21-40
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    The corpus clitoridis of dog extends in a cranio caudal direction along the median line of the lower part of the sinus urogenitalis, gradually losing size toward the caudal side, and ends in the glans clitoridis. It is surrounded by a tunica albuginea consisting of one circular layer. This corpus is made up of fat tissue, which is taken place by a mass of connective tissue cells of cartilaginous hardness in the part nearer to the glans clitoridis.
    The fossa clitoridis of blind-sac form, into which the sinus urogenitalis opens, extends down to the radical part of the clitoris and forms mucous folds there. In other words, the canine clitoris is a formation hanging down from the ventral wall of the sinus urogenitalis toward the fossa clitoridis, forming the glans clitoridis in the caudal and the radix clitoridis in the cranial part. A sagittal section of it reminds that of a finger, the corpus clitoridis of connective tissue being like the end phalanx and the glans clitoridis like a finger-ball.
    The cross-section of the glans clitoridis is tomato-shaped and is lined with a thin non-cornified stratified flat epithelium, which is free from papillae growing out of the propria. The radical part, however, is covered with a very thick stratifified epithelium containing very large cells rich in glycogen, into which well developed papillae grow from the propria. That is, the radical part is covered by an extension of the mucous membrane of the fossa clitoridis proper, so that this mucous membrane may be taken to represent a part of the inner lamella of the praeputium.
    A corpus cavernosum glandis is found in formation only in the radical part of the clitoris. The propria around this body is very rich in smooth muscle fibres, a condition continuing down to the middle part of the glans clitoridis. In the part of the glans more caudal to that, smooth muscle fibres are entirely absent, the propria consisting only of a connective tissue layer rich in cells.
    The n. dorsalis clitoridis consisting of several nerve bundles runs along the ventral side of the corpus clitoridis in its cranial part but in the more caudal parts they are reoriented more to the lateral. They send out small branches into the tunica albuginea around the corpus in their courses. This nerve subdivides into more numerous rami in the radicral part of the clitoris, which send out minuter branches into the propria of the praeputium. In the part where the fat tissue of the corpus clitoridis is replaced by connective tissue, nn. dorsales clitoridis dexter et sinister become further ramified into more numerous bundles and extend as far as to the ventral side of the corpus clitoridis, to send nerve branches into the propria rich in smooth muscle fibres in this part. The nn. dorsales clitoridis branch further into yet more numerous fine nerve bundles upon entering the glans and give off many branches into the propria.
    N. dorsalis clitoridis consists of many thick sensory fibres and a small number of vegetative fibres. The vasa dorsalia clitoridis are surrounded by well developed perivascular plexus of vegetative fibres. The vegetative fibres entering the corpus cavernosum glandis originate in this plexus and the vegetative fibres in n. dorsalis clitoridis.
    No PACINIAN body was found formed in the course of the n. dorsalis clitoridis of dog.
    A rather large number of genital nerve bodies Type III originating in the n. dorsalis clitoridis were found in the tunica albuginea of dog corpus clitoridis. These are non-capsulated spindle-shaped or ellipsoid bodies rich in special nuclei, with sensory fibres ending in branched terminations in them.
    The terminations of the sensory fibres from the n. dorsalis clitoridis are formed in the subepithelial propria of the praeputium and glans clitoridis. Their terminations are in most cases of the branched type. Namely, a thick sensory fibre, after losing its myelin sheath, is divided into a more or less large number of branches
    Download PDF (7807K)
  • Michio SAITO
    1955 Volume 9 Issue 1 Pages 41-57
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    In the large and intermediate bronchial branches of the lungs of dog, cartilages of various sizes are found circularly arranged in 3-4 rows. The smooth muscle layer under the propria is well developed, but the bronchial glands showing serous nature are very poor in development.
    In the small bronchial branches the cartilages are arranged generally piecewise in one row and the muscle layer is well developed, but here too the bronchial glands are in poor development. In the bronchioli also the muscle tissue is very good in development, so that the propria is nearly all taken up by the muscle layer. In the bronchioli respiratorii the epithelium is of the single-rowed cylinder and cubic type and is lined on the outside by a circular muscle layer still in good development. In the alveolar ducts also pieces of muscle tissue are seen here and there.
    Perichondral and subchondral plexuses are demonstrated to exist in the intrapulmonary bronchial wall. The former is found as loose-knit networks around the outermost cartilages and contain ganglia, large and small. The latter is very small-scaled plexus formed on the inside of the innermost cartilages by fine bundles originating in the perichondral plexus. In the smaller bronchial branches lacking cartilages the distinction of the two kinds of plexus is naturally obliterated, only plexus of small bundles being observed outside the muscle layer. These tiny plexuses also contain some small ganglia.
    The ganglion cells may be classified into two types-Type I and Type II-but I found mixed form of the two types not rarely. In my sections of the canine lungs, the cells of Type I somewhat exceeded those of Type II in number.
    The ganglion cells may be divided into the large, the intermediate and the small types. Their nuclei are usually round and in Type I cells, are mostly located eccentrically or even marginally. As SATO has observed in his study, I also found that the size of the nuclei increased in a slow arithmetic progression as the diameter of the cells increased more rapidly.
    Among the cells Type I, the cells with a central standing nucleus are round in form and their nerve processes run out of the cell body all-sidedly. When the nucleus is eccentrically or polarly standing, the nerve processes emerge from the cell surface opposite to the nucleus pole. The plasmodium around the cell is strongly developed, containing many special nuclei, near this process pole.
    Among the Type I cells, some cells with short processes returning to the mother cells forming windows (fenestrated cells) and with processes ending in end-lamellae were found, but none with processes terminating in rings.
    The cells with polarly standing nuclei in dog lung can be divided into octopus type cells and jelly-fish type cells, according to the course forms of their short processes, but in size they are inferior to those observed by SATO in human sympathetic trunk ganglia. Spiral type cells were hardly encountered.
    The Type II cells are mostly round and the nerve processes run out of the cell surface indifferently from all sides. Their short processes end in sharp points extracapsularly, often after undergoing ramification. Not rarely, however, do they terminate in end-knobs, and anastomosis between short processes from two neighbouring Type II cells is also frequently observed.
    The termination of the external vegetative fibres running into the ganglia is represented by the terminal reticulum commonly surrounding the ganglion cells, which partially runs into the accessory cell plasmodium but does not come into direct connection with the nerve cell.
    In the lungs of dog also the vegetative fibres end in the terminal reticulum. This terminal reticulum is especially well developed in the arteries and in the muscle layer. It comes only in contact with the surface of the cells but does not penetrate into their protoplasm nor sends branch elements into them.
    Download PDF (5636K)
  • Yasuo MII
    1955 Volume 9 Issue 1 Pages 59-65
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    1. In der Milch von Kuh, Ziege, Hund, Katze und Kaninchen kommen die kleineren Milchkügelchen von dem Durchmesser von 10-50mμ am Ende der Tragzeit und kurz nach der Entbindung in größerer Zahl vor, die größeren von dem Durchmesser über 50mμ aber in späteren Perioden, besonders nach dem Abstillen.
    2. Vergleicht man die Verteilung der Größe der Milchkügelchen bei Milchkügelchen von 10-200mμ Größe bei verschiedenen Tieren, so findet man, daß verhältnismäßig größere Milchkügelchen bei den Tieren in folgender Reihenfolge reichlich vorhanden sind: Kaninchen>Katze>Hund>Ziege>Kuh.
    3. Es wurden die Beziehungen zwischen der Vergrößerung der Milchkügelchen in der Milchdrüsen und dem Gehalt der Milch an Eiweißstoffen und Lipoiden sowie der Retention der Milch im Drüseninnern betrachtet.
    Download PDF (1067K)
  • Hideji YASUMITSU
    1955 Volume 9 Issue 1 Pages 67-89
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    1. Die Epitheldicke nimmt von dem Vorderteil der Nasenhöhle bis zur Choana und umgekehrt von den Bronchulen bis zur Kehlköpfhöhle immer zu. Das Epithel ist an den Orten, in welchen die Luftströmung nur gering ist, wie in der Oberkieferhöhle und an der konkaven Fläche der Nasenmuschel, ziemlich dünn. Das Epithel ist in der Regel bei der Katze dicker als beim Kaninchen, ein Unterschied, der im unteren Luftwege bedeutender ist als im oberen.
    2. Es besteht keine regelmäßige Beziehung zwischen der Höhe der Cilien und der Epitheldicke. Zwischen den Höhen der Cilien der beiden Tierarten gibt es auch keinen regelmäßigen Unterschied.
    3. Der Variationskoeffizient der Breite der Flimmerzellen ist bei der Katze meist größer als beim Kaninchen. Der Unterschied ist besonders groß in den meisten Teilen des unteren Luftweges und an anderen einigen Stellen. Dies beruht hauptsächlich auf dem Gemenge von zahlreichen Übergangsformen zu verdickten Becherzellen.
    4. Der Längen-Breitenindex der Flimmerzellen ist im allgemeinen bei der Katze kleiner als beim Kaninchen. Im unteren Luftwege der Katze ist der Index, mit Ausnahme der Bronchulen, unter 15.
    5. Die Flimmerzellen in dem mehrreihigen Epithel verjüngen sich in der Höhe des unteren Endes des Kernes nach unten. Was oben bezüglich der Dicke des Epithels erwähnt ist, gilt auch von dem Hauptabschnitt der Flimmerzellen ohne den verjüngten Anteil.
    6. Die im Epithel oben gereihten Kerne sind meist längsoval. Ihr Längen-Breitenindex ist gewöhnlich beim Kaninchen größer. In den dünnen Epithelien erscheinen sie aber kuglig. Die im Epithel am tiefsten liegenden Kerne sind kuglig. In dünnen zweireihigen Epithelien können sie sogar queroval sein.
    Download PDF (1740K)
  • Fumiaki SHIMODA
    1955 Volume 9 Issue 1 Pages 91-107
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    The general form of the knee joint is already accomplished in the 3rd or 4th month in a human embryo. Its synovial membrane consists of endothelial cell layer, stratum synoviale rich in blood capillaries and stratum fibrosum of close connective tissue. The adiposal bodies before and after the knee-joint are merely composed of loose connective tissue.
    The articular nerves running from the joint capsule into the synovial tissue are made of many medullated sensory fibres and a small number of unmedullated vegetative fibres. Vegetative fibres also run along the blood vessels. The primary and secondary plexuses said to be found in adult human knee synovialis are not observed.
    The articular nerves are rather small in number, so that the distribution of sensory fibres in the synovialis is poor, while the vegetative fibres here are much better developed, forming their terminal reticulum particularly conspicuously around the blood vessels.
    None of the sensory fibres coming into the synovial tissue pass over into the joint nerve bodies and the PACINIAN bodies found in human adult, most of them ending in unbranched and simepl branched terminations, but in rare cases, presumably capsulated simple branched terminations are also found, and the so-called GOLGI-MAZZONI's bodies were demonstrated, although in a very small quantity. In disagreement with the observations by the past researchers, the PACINIAN bodies were found only in a very small number and limited in the surface part of the collagenous tissue surrounding the patella and in the joint capsule. These bodies existed only in small-sized form.
    Many GOLGI-MAZZONI's bodies were found around the knee-joint. Since the knee-region in a human embryo of the early stage is very small, the localization of these bodies was accurately determined and the highly ideal silver staining I made use of allowed me to investigate the finest details of them with sufficient clarity. These bodies are formed in contact with the periosteum of the bones participating in the formation of the knee-joint. Around the femur, they are poor in development, but in the periostea of the tibia and particularly of the fibula they are found in many places. They are also found in a small number in the front of the patella. Besides, they are found in a small quantity in the joint capsule of the fossa poplitea and in a much larger quantity in the well-developed connective tissue around it.
    The positions where the GOLGI-MAZZONI's bodies are found in maximum frequency are the connective tissue at the areas where the muscle fibres come in direct contact with the periosteum, especially where the under-leg muscles take their origin, and the intermuscular connective tissue. Their number is rather small at the origins of the mm. plantaris, gastrocnemius and popliteus, but is very large at the origins of the mm. soleus, peronei, tibiales anterior et posterior, and extensor digitorum longus. The bodies are also found in a large quantity in the membrana interossea cruris.
    A GOLGI-MAZZONI's body is an arcuate cylinder in form. The elongated inner bulb occupies about one-third of the diameter of the body. The ground substance of the inner bulb consists of a liquid substance, and small special nuclei rich in chromatin are seen arranged in one row in periphery. Around the inner bulb is found a considerably thick transparent layer filled with liquid substance, around which are placed the inner circular connective tissue layer consisting of a single circular row of cells with large oval nuclei poor in chromatin and an outer longitudinal connective tissue layer consisting of cells with elongated nuclei arranged in one or two longitdinal rows. A single thick sensory fibre runs through the proximal pole of the body into the inner bulb and proceeds further along the axis to end bluntly gaining somewhat in size near the distal pole.
    Download PDF (4725K)
  • Beiträge zur vergleichenden Histologie des Hypothalamus-Hypophysensystems. 13. Mitteilung
    Hisao FUJITA
    1955 Volume 9 Issue 1 Pages 109-113
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Das Neurosekretionsbild des Hypothalamus-Hypophysensystems beim Haushuhn und der Hausente ist übersichtlich besprochen.
    Die Ausdehnung des Nucleus supraopticus und paraventricularis ist bei diesen Vögeln größer als bei den Säugetieren, aber ihre Zellenanordnung ist bei weitem lockerer. Die Zellen zeigen nach der GOMORIschen Methode dunkelblau gefärbte Sekretgranula im Leib. Im proximalen Teil des Trichters treten die gomoriphile Substanz in die äußere Zone desselben ein. Im Hinterlappen gruppiert sich diese Substanz in der Verdichtungszone, die aus Blutgefäßen und die Blutgefäße umgebenden Gitterfasernetzen bestehen. Man konstatierte gomoriphile Granula, die in den dritten Ventrikel und in die Blutgefäße im Hinterlappen eingetreten waren.
    Download PDF (1368K)
  • Beiträge zur vergleichenden Histologie des Hypothalamus-Hypophysensystems. 14. Mitteilung
    Hisao FUJITA, Shizuya HIRAOKA, Sotatsu OKI
    1955 Volume 9 Issue 1 Pages 115-121
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Es wurde das Neurosekretionsbild des Hypothalamus-Hypophysensystems bei alloxan-, dithizone- und oxine-diabetischen Hunden untersucht. An den Ganglienzellen der neurosekretorischen Hypothalamuskerne treten beim experimentell erzeugten Diabetes Veränderungen auf, die sich unter anderen in einer signifikanten Verkleinerung der Zellen und einer Verarmung an dem gomoriphilen Neurosekret und den NISSLschollen bemerkbar machen. Auch im Infundibulum und im Hinterlappen vermindern sich die HERRINGschen Körper und die gomoriphilen Granula. Diese Befunde treten, erst wenn der Zuckergehalt im Blut über 200mg/dl steigt, deutlich zutage.
    Download PDF (1128K)
  • Naohide UETA
    1955 Volume 9 Issue 1 Pages 123-128
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    In Japan wird die Houttuynia cordata von altersher zur Beschleunigung der Eiterung der Furunkel benutzt. Nach der Injektion ihres Extraktes in die Vene des Kaninchens wurde im durchsichtigen Fenster des Ohres die Umwandlung der Fibrocyten in Fibrohistiocyten und in kleine rundliche Zellen (Monocyten und leukocytenähnliche Zellen) beobachtet.
    Download PDF (1044K)
  • Norio OYAMA
    1955 Volume 9 Issue 1 Pages 129-133
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Die Lösung von Orange G, Ponceau PR und Wasserblau von pH 3.8-4.0 wurde auf die Beugeseite des Vorderarmes appliziert, um die Ultrastrukturdichte der Hautoberfläche zu bestimmen.
    1. Die Ultrastrukturdichte der Hautoberfläche zeigt die Neigung, sich mit dem Alter nach und nach zu vermehren.
    2. Nach dem mittleren Alter ist die Ultrastrukturdichte zumeist beim männlichen Geschlecht höher als beim weiblichen.
    Download PDF (358K)
  • Noriyasu NOMURA
    1955 Volume 9 Issue 1 Pages 135-138
    Published: August 20, 1955
    Released on J-STAGE: February 19, 2009
    JOURNAL FREE ACCESS
    Die im Text der vorigen Mitteilung falsch wiedergegebenen Zahlen der Tabelle wurden berichtigt, und die ringkernigen Leukocyten im Blut wurden weiter an verschiedenen Spezies der Maus und Ratte ausgezählt. Bei den Hausmäusen haben die Spezialleukocyten etwa bei ihrem 1.7% einen großgelochten Ringkern. Bei den weißen Ratten kommen die Spezial- und acidophilen Leukocyten mit einem großgelochten Ringkern bei etwa 6.3% aller polymorphkernigen Leukocyten (Spezialleukocyten und acido- und basophilen Leukocyten) vor. Die einen großgelochten Ringkern führenden Spezialleukocyten sind immer bei den Ratten zahlreicher zu finden als bei den Mäusen. Sowohl bei den Mäusen als auch bei den Ratten sieht man großgelochte Ringkerne in den acidophilen Leukocyten häufiger als in den Spezialleukocyten, aber die segmentierten Ringkerne finden sich in den Spezialleukocyten zahlreicher als in den acidophilen Leukocyten.
    Download PDF (265K)
feedback
Top