The Advanced Solid Rocket is being developed by JAXA (Japan Aerospace Exploration Agency). Since its configuration has been changed very recently, its aerodynamic characteristics are of great interest of the JAXA Advanced Solid Rocket Team. In this study, we carried out wind tunnel tests on the aerodynamic characteristics of the present configuration for Mach 1.5. Six test cases were conducted with different body configurations, attack angles, and roll angles. A six component balance, oilflow visualization, Schlieren images were used throughout the experiments. It was found that, at zero angle-of-attack, the flow around the body were perturbed and its drag (axial force) characteristics were significantly influenced by protruding body components such as flanges, cable ducts, and attitude control units of SMSJ (Solid Motor Side Jet), while the nozzle had a minor role. With angle-of-attack of five degree, normal force of
CNα = 3.50±0.03 was measured along with complex flow features observed in the full-component model; whereas no crossflow separations were induced around the no-protuberance model with
CNα = 2.58±0.10. These values were almost constant with respect to the angle-of-attack in both of the cases. Furthermore, presence of roll angle made the flow more complicated, involving interactions of separation vortices. These data provide us with fundamental and important aerodynamic insights of the Advanced Solid Rocket, and they will be utilized as reference data for the corresponding numerical analysis.
抄録全体を表示