Biomedical Research
Online ISSN : 1880-313X
Print ISSN : 0388-6107
ISSN-L : 0388-6107
37 巻 , 3 号
選択された号の論文の6件中1~6を表示しています
Full Papers
  • Saori TANAKA, Shigekuni HOSOGI, Yukinori SAWABE, Chikao SHIMAMOTO, Hit ...
    2016 年 37 巻 3 号 p. 167-178
    発行日: 2016/06/01
    公開日: 2016/06/30
    ジャーナル フリー
    A PPARα (peroxisome proliferation activation receptor α) agonist (GW7647) activates nitric oxide synthase 1 (NOS1) to produce NO leading to cGMP accumulation in antral mucous cells. In this study, we examined how PPARα activates NOS1. The NO production stimulated by GW7647 was suppressed by inhibitors of PI3K (wortmannin) and Akt (AKT 1/2 Kinase Inhibitor, AKT-inh), although it was also suppressed by the inhibitors of PPARα (GW6471) and NOS1 (N-PLA). GW7647 enhanced the ACh (acetylcholine)-stimulated exocytosis (Ca2+-regulated exocytosis) mediated via NO, which was abolished by GW6471, N-PLA, wortmannin, and AKT-inh. The Western blotting revealed that GW7647 phosphorylates NOS1 via phosphorylation of PI3K/Akt in antral mucous cells. The immunofluorescence examinations demonstrated that PPARα existing with NOS1 co-localizes with PI3K and Akt in the cytoplasm of antral mucous cells. ACh alone and AACOCF3, an analogue of arachidonic acid (AA), induced the NOS1 phosphorylation via PI3K/Akt to produce NO, which was inhibited by GW6471. Since AA is a natural ligand for PPARα, ACh stimulates PPARα probably via AA. In conclusion, PPARα activates NOS1 via PI3K/Akt phosphorylation to produce NO in antral mucous cells during ACh stimulation.
  • Ga-Hyun JOE, Midori ANDOH, Aki SHINOKI, Weeranuch LANG, Yuya KUMAGAI, ...
    2016 年 37 巻 3 号 p. 179-186
    発行日: 2016/06/01
    公開日: 2016/06/30
    ジャーナル フリー
    The term “megalo-saccharide” is used for saccharides with ten or more saccharide units, whereas the term “oligo-saccharide” is used for saccharides containing fewer than ten monosaccharide units. Megalo-type α-1,6-glucosaccharide (M-IM) is a non-digestible saccharide and not utilized by intestinal bacteria, suggesting that ingested M-IM may encounter ileum Peyer’s patches that contains immune cells such as macrophages. Macrophages are responsible for antigen incorporation and presentation during the initial step of immune responses. We investigated whether M-IMs modulate macrophage functions such as cytokine production, nitric oxide production, cell viability, and phagocytosis. Primary macrophages collected from the rats were cultured with the existence of M-IM or lipopolysaccharides (LPS). M-IM and LPS induced the production of tumor necrosis factor α (TNFα), interleukin 6 (IL6), and nitric oxide in the primary macrophages. The gene expression profile of inflammatory factors including TNFα, IL6, and ILlβ in M-IM-stimulated cells was similar to that of LPS-stimulated cells. The M-IM did not affect phagocytosis in the primary macrophages. The M-IM-induced TNFα production was suppressed in the cells treated with a tolllike receptor 4 (TLR4) inhibitor called TAK-242. In conclusion, the M-IM modulates cytokine expression via TLR4 signaling and may play a role in the modulation of immune responses.
  • Miao ZHENG, Shunsuke KIMURA, Junko NIO-KOBAYASHI, Toshihiko IWANAGA
    2016 年 37 巻 3 号 p. 187-198
    発行日: 2016/06/01
    公開日: 2016/06/30
    ジャーナル フリー
    LYVE-1, a receptor molecule for hyaluronan, is expressed in the lymphatic endothelium, blood sinus endothelium, and certain macrophage lineages. The present immunohistochemical study revealed a broader distribution of LYVE-1 in vascular endothelial cells of the murine lung, adrenal gland, and heart as well as the liver and spleen. In addition, sinus reticular cells—including sinuslining cells—in the medulla of the lymph node also intensely expressed LYVE-1. Ultrastructurally, immuno-gold particles for LYVE-1 were localized on the entire length of plasma membrane in all cell types. Most of these LYVE-1-expressing cells had previously been classified as the reticuloendothelial system (RES) specialized for eliminating foreign particles. An LPS stimulation decreased the LYVE-1 expression in macrophages but elevated the expression at mRNA and protein levels in the liver and lung, major organs for the elimination of blood-born waste substances. LYVE-1-expressing endothelial cells in these organs participated in the endocytosis of exogenous particles, and the uptake ability was conspicuously enhanced by the LPS challenge. Although the expression of the degrading enzyme, hyaluronidase, was generally low in the LYVE-1-expressing cells, they were topographically associated with a dense distribution of macrophages possessing hyaluronidase activities in each tissue. These findings suggest that the LYVE-1-expressing cells might be involved in the uptake of hyaluronan and other waste products as well as foreign particles circulating in the blood and lymph while participating in the subsequent degradation in relay with adjacent macrophage populations.
  • Hiroyuki TADA, Takamitsu SHIMIZU, Isao NAGAOKA, Haruhiko TAKADA
    2016 年 37 巻 3 号 p. 199-205
    発行日: 2016/06/01
    公開日: 2016/06/30
    ジャーナル フリー
    Maxacalcitol (22-oxacalcitriol: OCT) is a synthetic vitamin D3 analog with a limited calcemic effect. In this study, we investigated whether OCT increases the production of LL-37/CAP-18, a human cathelicidin antimicrobial peptide, in human gingival/oral epithelial cells. A human gingival epithelial cell line (Ca9-22) and human oral epithelial cell lines (HSC-2, HSC-3, and HSC-4) exhibited the enhanced expression of LL-37 mRNA upon stimulation with OCT as well as active metabolites of vitamins D3 and D2. Among the human epithelial cell lines, Ca9-22 exhibited the strongest response to these vitamin D-related compounds. OCT induced the higher production of CAP-18 (ng/mL order) until 6 days time-dependently in Ca9-22 cells in culture. The periodontal pathogen Porphyromonas gingivalis was killed by treatment with the LL-37 peptide. These findings suggest that OCT induces the production of hCAP-18/LL-37 in a manner similar to that induced by the active metabolite of vitamin D3.
  • Meri HISAMOTO, Marie GOTO, Mami MUTO, Junko NIO-KOBAYASHI, Toshihiko I ...
    2016 年 37 巻 3 号 p. 207-214
    発行日: 2016/06/01
    公開日: 2016/06/30
    ジャーナル フリー
    The primary cilium, a sensory apparatus, functions as both a chemical and mechanical sensor to receive environmental stimuli. The present study focused on the primary cilia in the epithelialmesenchymal interaction during tooth development. We examined the localization and direction of projection of primary cilia in the tooth germ and oral cavity of mice by immunohistochemical observation. Adenylyl cyclase 3 (ACIII)-immunolabeled cilia were visible in the inner/outer enamel epithelium of molars at the fetal stage and then conspicuously developed in the odontoblast layer postnatally. The primary cilia in ameloblasts and odontoblasts—shown by the double staining of acetylated tubulin and γ-tubulin—were regularly arranged from postnatal Day12, projecting apart from each other. The periodontal ligament possessed ACIII-positive cilia, which gathered on both sides of the dentin/cement and alveolar bone in postnatal days. In the oral cavity, numerous long primary cilia immunoreactive for ACIII were condensed at subepithelial stromal cells in the oral processes in fetuses, while postnatally a small number of short cilia were dispersed throughout the stroma of the oral cavity. These findings suggest that the primary cilia showing stage- and regionspecific morphology are involved in the epithelial-mesenchymal interaction during tooth development via mechano- and/or chemoreception for growth factors.
  • Tatsuya FUKUSHIMA, Akira HOZUMI, Masato TOMITA, Akihiko YONEKURA, Nori ...
    2016 年 37 巻 3 号 p. 215-220
    発行日: 2016/06/01
    公開日: 2016/06/30
    ジャーナル フリー
    Our previous study has shown that plasminogen activator inhibitor 1 (PAI-1) gene expression and secretion from bone marrow adipocytes increased markedly with dexamethasone administration. The purpose of the present study was to measure the secretion of various adipokines from human bone marrow and blood, and investigate how adipokine secretion changes in a steroid environment. Human blood and bone marrow fluid were collected from a steroid treatment group and a control group during hip replacement surgery, and an enzyme-linked immunosorbent assay (ELISA) was used to measure the adiponectin, leptin, and PAI-1 levels. Adiponectin and leptin showed no significant differences between bone marrow and blood levels, but PAI-1 was significantly higher in bone marrow. The steroid treatment group had higher levels of leptin and PAI-1 in both the blood and bone marrow than the control group. PAI-1 was present at high concentrations in the bone marrow and increased by steroid treatment. High levels of PAI-1 in bone marrow may influence intraosseous hemodynamics and may induce necrotic bone disorders.
feedback
Top