Biomedical Research
Online ISSN : 1880-313X
Print ISSN : 0388-6107
ISSN-L : 0388-6107
43 巻, 6 号
選択された号の論文の4件中1~4を表示しています
review
  • Toshihiko IWANAGA, Hiromi TAKAHASHI-IWANAGA
    原稿種別: research-article
    2022 年 43 巻 6 号 p. 187-199
    発行日: 2022/12/01
    公開日: 2022/12/14
    ジャーナル フリー

    The urethra is ontogenetically derived from the cloaca together with distal parts of the large intestine, and serotonin cells are predominant among dispersed endocrine/paracrine cells in the epithelia of both tissues. Analysis of urethral endocrine cells thus helps us to understand the functions of gut endocrine cells and their communication with the nervous system, due to the fact that the urethra is a simple tubular organ, where only urine without microflora rapidly passes through. A certain number of urethral endocrine cells display unique, complicated shapes with dendritic processes, reminiscent of neurons. Characteristically, urethral endocrine cells—often called paraneurons—have direct contact with sensory nerves within the epithelium, unlike gut endocrine cells lacking in direct contact with nerves. These traits encourage us to focus on the urethral paraneurons as ideal endocrine/paracrine cells. A topographical complex of urethral paraneurons and afferent nerve fibers is sensitive to the passage of urine or the distention of the urethral lumen. The urethra-bladder excitatory reflex facilitates micturition via the release of serotonin from the paraneurons, ultimately ensuring complete voiding of the bladder. This reflex may also influence sexual behaviors such as ejaculation or the female orgasm. Urethral brush cells as well as paraneurons are responsible for continuous monitoring of the mucosal surface, especially for pathogens entering via the external urethral orifice.

Full Papers
  • Hiroyasu KAGAWA, Keiichi HATAKEYAMA, Akio SHIOMI, Hitoshi HINO, Shoich ...
    原稿種別: research-article
    2022 年 43 巻 6 号 p. 201-209
    発行日: 2022/12/01
    公開日: 2022/12/14
    ジャーナル フリー
    電子付録

    Transcriptome-based classification, such as consensus molecular subtyping, is expected to be applied to colorectal cancer (CRC). However, the relationship between molecular profiles and classical tumor markers, which are already used in clinical practice, has not been analyzed in a large cohort and remains unclear. We classified more than 1,500 Japanese patients with CRC based on consensus molecular subtyping and investigated the clinically available blood carcinoembryonic antigen (CEA) concentrations of each subgroup. To precisely distinguish CRCs, we allocated them to five subgroups, including tumors that were difficult to classify using the consensus molecular subtypes (CMSs), and extracted a heterogeneous population with somatic mutations and expression profiles that differed from those of the CMSs 1–4. For patients allocated to the CMS4 subgroup of stage III CRCs, elevated blood CEA concentrations may identify a subgroup with highly aggressive disease and contribute to improving therapeutic decisions. Furthermore, gene expression and pathway analyses of tumor and non-tumor tissues revealed that tumor immunity was “cold” in this subgroup with high CEA concentrations. The combination of emerging molecular profiling and classical tumor markers may have greater clinical utility than either used alone.

  • Tomoyuki HIOKI, Rie MATSUSHIMA-NISHIWAKI, Haruhiko TOKUDA, Osamu KOZAW ...
    原稿種別: research-article
    2022 年 43 巻 6 号 p. 211-221
    発行日: 2022/12/01
    公開日: 2022/12/14
    ジャーナル フリー

    Selective estrogen receptor modulator (SERM) binds to estrogen receptors (ERs) and acts as both an agonist or an antagonist, depending on the target tissue. Raloxifene and bazedoxifene as SERMs are currently used hormone replacement medicines for postmenopausal osteoporosis. Macrophage colony-stimulating factor (M-CSF) secreted from osteoblasts promotes osteoclastogenesis. We have previously demonstrated that transforming growth factor (TGF)-β induces the synthesis of M-CSF via SMAD2/3, p38 mitogen-activated protein kinase (MAPK), p44/p42 MAPK and c-Jun N-terminal kinase (JNK) in osteoblast-like MC3T3-E1 cells. In the present study, we investigated whether SERM affects the M-CSF synthesis by TGF-β in MC3T3-E1 cells. Raloxifene and bazedoxifene significantly suppressed the synthesis of M-CSF. PPT, an ERα agonist, but not ERB041, an ERβ agonist, inhibited the release of M-CSF. MPP, an ERα antagonist, reversed the suppression by raloxifene of the M-CSF release. Raloxifene attenuated the TGF-β-induced phosphorylation of JNK but not SMAD3, p42 MAPK and p38 MAPK. Bazedoxifene and PPT also inhibited the phosphorylation of JNK. Furthermore, MPP, an ERα antagonist, reversed the suppression by both raloxifene and bazedoxifene of the phosphorylation of JNK. Our results strongly indicate that raloxifene and bazedoxifene, SERMs, suppress the TGF-β-induced synthesis of M-CSF through ERα-mediated inhibition of JNK pathway in osteoblasts.

  • Kohei TAKAHASHI, Yuko KUWAHARA, Ikuo KATO, Shinji ASANO, Takaharu KOZA ...
    原稿種別: research-article
    2022 年 43 巻 6 号 p. 223-239
    発行日: 2022/12/01
    公開日: 2022/12/14
    ジャーナル フリー

    The inhibitory action of the secondary bile acid lithocholic acid (LCA) on neurally evoked Cl/HCO3 secretion was investigated using the Ussing-chambered mucosal-submucosal preparation from the rat distal colon. Electrical field stimulation (EFS) evoked cholinergic and noncholinergic secretory responses in the rat distal colon. The responses were almost completely blocked by TTX (10−6 M) but not atropine (10−5 M) or hexamethonium (10−4 M). The selective antagonist for VIP receptor 1 (VPAC1) greatly reduced the EFS-evoked response. Thus, the rat distal colon may be predominantly innervated by noncholinergic VIP secretomotor neurons. Basolateral addition of 6 × 10−5 M LCA inhibited the EFS-evoked response. The inhibitory action of LCA was partly rescued by the Y2R antagonist BIIE0246. The bile acid receptor TGR5 agonist INT-777 mimicked the LCA-induced inhibitory action. Immunohistochemical staining showed the colocalization of TGR5 and PYY on L cells. TGR5 immunoreactivity was also found in VIP-immunoreactive submucosal neurons which also expressed the PYY receptor, Y2R. These results suggest that LCA inhibits neurally evoked Cl/HCO3 secretion through the activation of TGR5 on L cells and cholinergic- and VIP-secretomotor neurons in the submucosal plexus. Furthermore, the inhibitory mechanism may involve TGR5-stimulated PYY release from L cells and Y2R activation in VIP-secretomotor neurons.

feedback
Top