Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
44 巻 , 11 号
選択された号の論文の28件中1~28を表示しています
Reviews
  • Satoru Koyanagi
    2021 年 44 巻 11 号 p. 1577-1584
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Daily rhythmic variations in biological functions affect the efficacy and/or toxicity of drugs: a large number of drugs cannot be expected to exhibit the same potency at different administration times. The “circadian clock” is an endogenous timing system that broadly regulates metabolism, physiology and behavior. In mammals, this clock governs the oscillatory expression of the majority of genes with a period length of approximately 24 h. Genetic studies have revealed that molecular components of the circadian clock regulate the expression of genes responsible for the sensitivity to drugs and their disposition. The circadian control of pharmacodynamics and pharmacokinetics enables ‘chrono-pharmaceutical’ applications, namely drug administration at appropriate times of day to optimize the therapeutic index (efficacy vs. toxicity). On the other hand, a variety of pathological conditions also exhibit marked day-night changes in symptom intensity. Currently, novel therapeutic approaches are facilitated by the development of chemical compound targeted to key proteins that cause circadian exacerbation of disease events. This review presents an overview of the current understanding of the role of the circadian biological clock in regulating drug efficacy and disease conditions, and also describes the importance of identifying the difference in the circadian machinery between diurnal and nocturnal animals to select the most appropriate times of day to administer drugs in humans.

    Editor’s picks

    The sensitivity to drugs and their disposition are changed depending on the circadian time. Hence, choosing appropriate times of day to administer drugs enables to enhance the therapeutic index of pharmacotherapy. On the other hand, various disease conditions also exhibit circadian changes in symptom intensity. Several therapeutic approaches are facilitated by the identification of chemical compound targeted to key molecules that cause circadian exacerbation of disease events. The author describes the current understanding of the role of the circadian biological clock in regulating drug efficacy and disease condition, and also presents ‘chrono-pharmaceutical’ strategy for treatment of diseases and drug development.

  • Ryuta Muromoto, Kazuya Shimoda, Kenji Oritani, Tadashi Matsuda
    2021 年 44 巻 11 号 p. 1585-1592
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Tyrosine kinase 2 (Tyk2) is a member of the Janus family of protein tyrosine kinases (Jaks). Tyk2 associates with interferon (IFN)-α, IFN-β, interleukin (IL)-6, IL-10, IL-12, and IL-23 receptors and mediates their downstream signaling pathways. Based on our data using Tyk2-deficient mice and cells, Tyk2 plays crucial roles in the differentiation, maintenance, and function of T helper 1 (Th1) and Th17 cells, and its dysregulation may promote autoimmune and/or inflammatory diseases. IFN-α-induced growth inhibition of B lymphocyte progenitors is dependent on Tyk2-mediated signals to regulate death-associated protein (Daxx) nuclear localization and Daxx-promyelocytic leukemia protein interactions. Tyk2-deficient mice show impaired constitutive production of type I IFNs by macrophages under steady-state conditions. When heat-killed Cutibacterium acnes is injected intraperitoneally, Tyk2-deficient mice show less granuloma formation through enhanced prostaglandin E2 and protein kinase A activities, leading to high IL-10 production by macrophages. Thus, Tyk2 is widely involved in the immune and inflammatory response at multiple events; therefore, Tyk2 is likely to be a suitable target for treating patients with autoimmune and/or chronic inflammatory diseases. Clinical trials of Tyk2 inhibitors have shown higher response rates and improved tolerability in the treatment of patients with psoriasis and inflammatory bowel diseases. Taken together, Tyk2 inhibition has great potential for clinical application in the management of a variety of diseases.

    Editor’s picks

    Tyrosine kinase 2 (Tyk2) is a member of the Janus family of protein tyrosine kinases (JAKs). Tyk2 associates with interferon (IFN)-α, IFN-β, interleukin (IL)-6, IL-10, IL-12, and IL-23 receptors and mediates their downstream signaling pathways. The authors summarize that Tyk2 plays crucial roles in the differentiation, maintenance, and function of T helper 1 (Th1) and Th17 cells and that its dysregulation in autoimmune and/or inflammatory diseases using Tyk2-deficient mice and cells. The authors further describe that Tyk2 inhibition has great potential for clinical application in the management of a variety of immune-relating diseases.

Current Topics - Recent Advances in the Understanding of Nuclear Receptors- and Drug-Metabolizing Enzymes-Mediated Inter-Individual Differences
  • Shuso Takeda
    2021 年 44 巻 11 号 p. 1593
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML
    Editor’s picks

    This Current Topics includes 5 reviews, and the authors for individual reviews were invited to contribute papers updating/improving readers’ understanding of the nuclear receptors- and drug-metabolizing enzymes-mediated inter-individual differences. Nuclear receptors (e.g., ERα/β, PPARβ/δ, and RORα) are basically ligand-inducible and are known to be involved in the regulation of numerous physiological processes. At the post-transcriptional level, some microRNAs are involved in the regulation of CYP3A protein expression. In addition, at the post-translational levels, there are functional protein-protein interactions between different kinds of drug-metabolizing enzymes i.e., P450 and UGT, which results in modulation of the enzyme(s) activities.

Current Topics: Reviews
  • Masayo Hirao-Suzuki
    2021 年 44 巻 11 号 p. 1594-1597
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Estrogen is essential for the growth and development of mammary glands and its signaling is associated with breast cancer growth. Estrogen can exert physiological actions via estrogen receptors α/β (ERα/β). There is experimental evidence suggesting that in ERα/β-positive breast cancer, ERα promotes tumor cell proliferation and ERβ inhibits ERα-mediated transcriptional activity, resulting in abrogation of cell growth. Therefore, ERβ is attracting attention as a potential tumor suppressor, and as a biomarker and therapeutic target in the ERα/β-positive breast cancer. Based on this information, we have hypothesized that some endocrine-disrupting chemicals (EDCs) that can perturb the balance between ERα and ERβ expression levels in breast cancer cells might have effects on the breast cancer proliferation (i.e., down-regulation of the α-type of ER). We have recently reported that 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite of bisphenol A, in ERα/β-positive human breast cancer significantly down-regulates ERα expression, yet stimulates cell proliferation through the activation of ERβ-mediated transcription. These results support our hypothesis by demonstrating that exposure to MBP altered the functional role of ERβ in breast cancer cells from suppressor to promoter. In contrast, some EDCs, such as Δ9-tetrahydrocannabinol and bisphenol AF, can exhibit anti-estrogenic effects through up-regulation of ERβ expression without affecting the ERα expression levels. However, there is no consensus on the correlation between ERβ expression levels and clinical prognosis, which might be due to differences in exposed chemicals. Therefore, elucidating the exposure effects of EDCs can reveal the reason for inconsistent functional role of ERβ in ERα/β-positive breast cancer.

  • Takayuki Koga, Jeffrey M. Peters
    2021 年 44 巻 11 号 p. 1598-1606
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Excessive, chronic alcohol consumption can lead to alcoholic liver disease. The etiology of alcoholic liver disease is multifactorial and is influenced by alterations in gene expression and changes in fatty acid metabolism, oxidative stress, and insulin resistance. These events can lead to steatosis, fibrosis, and eventually to cirrhosis and liver cancer. Many of these functions are regulated by peroxisome proliferator-activated receptors (PPARs). Thus, it is not surprising that PPARs can modulate the mechanisms that cause alcoholic liver disease. While the roles of PPARα and PPARγ are clearer, the role of PPARβ/δ in alcoholic liver disease requires further clarification. This review summarizes the current understanding based on recent studies that indicate that PPARβ/δ can likely be targeted for the treatment and/or the prevention of alcoholic liver disease.

  • Hiroshi Matsuoka, Akihiro Michihara
    2021 年 44 巻 11 号 p. 1607-1616
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    The retinoic acid receptor-related orphan receptor α (RORα) is involved in the regulation of several physiological processes, including development, metabolism, and circadian rhythm. RORα-deficient mice display profound atherosclerosis, in which hypoalphalipoproteinemia is reportedly associated with decreased plasma levels of high-density lipoprotein, increased levels of inflammatory cytokines, and ischemia/reperfusion-induced damage. The recent characterization of endogenous ligands (including cholesterol, oxysterols, provitamin D3, and their derivatives), mediators, and initiation complexes associated with the transcriptional regulation of these orphan nuclear receptors has facilitated the development of synthetic ligands. These findings have also highlighted the potential of application of RORα as a therapeutic target for several diseases, including diabetes, dyslipidemia, and atherosclerosis. In this review, the current literature related to the structure and function of RORα, its genetic inter-individual differences, and its potential as a therapeutic target in atherosclerosis is discussed.

  • Chieri Fujino, Seigo Sanoh, Toshiya Katsura
    2021 年 44 巻 11 号 p. 1617-1634
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.

  • Yuu Miyauchi, Shinji Takechi, Yuji Ishii
    2021 年 44 巻 11 号 p. 1635-1644
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Cytochrome P450 (P450) and uridine 5′-diphosphate (UDP)-glucuronosyltransferase (UGT) catalyze oxidation and glucuronidation in drug metabolism, respectively. It is believed that P450 and UGT work separately because they perform distinct reactions and exhibit opposite membrane topologies on the endoplasmic reticulum (ER). However, given that some chemicals are sequentially metabolized by P450 and UGT, it is reasonable to consider that the enzymes may interact and work cooperatively. Previous research by our team detected protein–protein interactions between P450 and UGT by analyzing solubilized rat liver microsomes with P450-immobilized affinity column chromatography. Although P450 and UGT have been known to form homo- and hetero-oligomers, this is the first report indicating a P450-UGT association. Based on our previous study, we focused on the P450–UGT interaction and reported lines of evidence that the P450-UGT association is a functional protein–protein interaction that can alter the enzymatic capabilities, including enhancement or suppression of the activities of P450 and UGT, helping UGT to acquire novel regioselectivity, and inhibiting substrate binding to P450. Biochemical and molecular bioscientific approaches suggested that P450 and UGT interact with each other at their internal hydrophobic domains in the ER membrane. Furthermore, several in vivo studies have reported the presence of a functional P450-UGT association under physiological conditions. The P450–UGT interaction is expected to function as a novel post-translational factor for inter-individual differences in the drug-metabolizing enzymes.

Communication to the Editor
  • Soo-Woong Lee
    2021 年 44 巻 11 号 p. 1645-1652
    発行日: 2021/11/01
    公開日: 2021/11/01
    [早期公開] 公開日: 2021/08/26
    ジャーナル フリー HTML
    電子付録

    Organ damage and immune deficiency are important problems in sepsis caused by an excessive immune response. There is controversy about the cause of immune suppression. In this study, we investigated the roles of macrophages that exhibit excessive activity on T cell immunity. Peritoneal macrophages from mice with cecal ligation and puncture (CLP)-induced sepsis migrated to different organs. In particular, V-set immunoglobulin (Ig)-domain-containing 4 (VSIG4) positive macrophages appeared in the spleen 48 h after CLP induction. When cocultured with splenic T cells, VSIG4(+) cells inhibited the proliferation of activated T cells through the release of nitric oxide (NO) compared to VSIG4(−) cells. Stimulation of VSIG4(+) cells with V-domain Ig suppressor of T cell activation (VISTA) antibody increased the expression of several cytokine genes and the release of NO, but not phagocytosis, compared to those of hamster IgG-stimulated VSIG4(+) cells. When cocultured with splenic T cells, VISTA-stimulated VSIG4(+) cells induced excessive T cell suppression via more NO secretion compared to hamster IgG-stimulated VSIG4(+) cells. Taken together, the current study demonstrates that VSIG4(+) peritoneal macrophages play important roles in inducing immunosuppression and that VISTA acts as a costimulatory receptor in these cells. These data suggest that blocking the migration of VSIG4(+) cells might alleviate excessive immune activity and that blocking VISTA on VSIG4(+) macrophages might play a crucial role in the development of new therapies to prevent T cell suppression in sepsis.

Regular Articles
  • Sota Kato, Koji Yamamoto, Saeko Uchida, Teisuke Takahashi
    2021 年 44 巻 11 号 p. 1653-1661
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    TP0463518 (TS-143) is a competitive prolyl hydroxylase 1/2/3 pan-inhibitor, and has been shown to specifically stabilize hypoxia-inducible factor-2 alpha in the liver to increase erythropoietin production. While TP0463518 has been shown to improve renal anemia, its effect on anemia of inflammation is still unknown. In this study, we created a rat model of anemia of inflammation by administering peptidoglycan-polysaccharide (PG-PS) to Lewis rats; the PG-PS-treated rats developed anemia within 2 weeks after the PG-PS challenge. The hematopoietic effects of oral TP0463518 administration at 10 mg/kg once daily for 6 weeks were examined in this rat model. The hematocrit values in the TP0463518-treated group increased significantly from 32.8 ± 0.8 to 44.5 ± 2.1% after the treatment, which was comparable to that in the healthy control group. The change of the mean corpuscular volume following TP0463518 treatment was similar to that in the healthy control group up to week 4, and significantly higher than that in the vehicle-treated group. TP0463518 increased divalent metal transporter 1 and duodenal cytochrome b expressions in the intestine. Conversely, TP0465318 did not exert any effects on the expressions of genes involved in iron metabolism in the liver, even though TP0463518 dramatically increased erythropoietin expression. Furthermore, TP0463518 had no effect on the expressions of inflammation markers in the liver. These results suggest that TP0463518 increased iron absorption and improved anemia of inflammation without exacerbating liver inflammation. TP0463518 appears to have an acceptable safety profile and could become a useful new therapeutic option for anemia of inflammation.

  • Yanni Ma, Qi Qi, Qingping He, Nailya S. Gilyazova, Gordon Ibeanu, P. A ...
    2021 年 44 巻 11 号 p. 1662-1669
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Glutamate differentially affects the levels extracellular signal-regulated kinase (ERK)1/2 and ERK3 and the protective effect of B355252, an aryl thiophene compound, 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide, is associated with suppression of ERK1/2. The objectives of this study were to further investigate the impact of B355252 on ERK3 and its downstream signaling pathways affected by glutamate exposure in the mouse hippocampal HT-22 neuronal cells. Murine hippocampal HT22 cells were incubated with glutamate and treated with B355252. Cell viability was assessed, protein levels of pERK3, ERK3, mitogen-activated protein kinase-activated protein kinase-5 (MAPKAPK-5), steroid receptor coactivator 3 (SRC-3), p-S6 and S6 were measured using Western blotting, and immunoreactivity of p-S6 was determined by immunocytochemistry. The results reveal that glutamate markedly diminished the protein levels of p-ERK3 and its downstream targets MK-5 and SRC-3 and increased p-S6, an indicator for mechanistic target of rapamycin (mTOR) activation. Conversely, treatment with B355252 protected the cells from glutamate-induced damage and prevented the glutamate-caused declines of p-ERK3, MK-5 and SRC-3 and increase of p-S6. Our study demonstrates that one of the mechanisms that glutamate mediates its cytotoxicity is through suppression of ERK3 and that B355252 rescues the cells from glutamate toxicity by reverting ERK3 level.

  • Kanan Bando, Takefumi Oizumi, Tetsu Takahashi, Itaru Mizoguchi, Shunji ...
    2021 年 44 巻 11 号 p. 1670-1680
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML
    電子付録

    Bisphosphonates (BPs) are major anti-bone-resorptive drugs. Among them, the nitrogen-containing BPs (NBPs) exhibit much stronger anti-bone-resorptive activities than non-nitrogen-containing BPs (non-NBPs). However, BP-related osteonecrosis of the jaw (BRONJ) has been increasing without effective strategies for its prevention or treatment. The release of NBPs (but not non-NBPs) from NBP-accumulated jawbones has been supposed to cause BRONJ, even though non-NBPs (such as etidronate (Eti) and clodronate (Clo)) are given at very high doses because of their low anti-bone-resorptive activities. Our murine experiments have demonstrated that NBPs cause inflammation/necrosis at the injection site, and that Eti and Clo can reduce or prevent the inflammatory/necrotic effects of NBPs by inhibiting their entry into soft-tissue cells. In addition, our preliminary clinical studies suggest that Eti may be useful for treating BRONJ. Notably, Eti, when administered together with an NBP, reduces the latter’s anti-bone-resorptive effect. Here, on the basis of the above background, we examined and compared in vitro interactions of NBPs, non-NBPs, and related substances with hydroxyapatite (HA), and obtained the following results. (i) NBPs bind rapidly to HA under pH-neutral conditions. (ii) At high concentrations, Eti and Clo inhibit NBP-binding to HA and rapidly expel HA-bound NBPs (potency Eti>>Clo). (iii) Pyrophosphate also inhibits NBP-binding to HA and expels HA-bound NBPs. Based on these results and those reported previously, we discuss (i) possible anti-BRONJ strategies involving the use of Eti and/or Clo to reduce jawbone-accumulated NBPs, and (ii) a possible involvement of pyrophosphate-mediated release of NBPs as a cause of BRONJ.

  • Ratna Dini Haryuni, Tomohiro Tanaka, Jun-ichiro Takahashi, Iimi Onuma, ...
    2021 年 44 巻 11 号 p. 1681-1687
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    The ligand-induced internalization of epidermal growth factor receptor (EGFR) is generally considered to attenuate downstream signaling via its endosomal degradation. However, the endocytosis of an oncogenic EGFR variant III (EGFRvIII) is impaired, which leads to persistent signaling from the cell surface, thereby promoting the proliferation and survival of glioblastoma multiforme (GBM) cells. Cellular stress triggers the non-canonical endocytosis-recycling of EGFR by p38-mediated phosphorylation. In the present study, we used temozolomide (TMZ), the standard chemotherapeutic agent for the treatment of GBM patients, to examine whether EGFRvIII is controlled by a non-canonical mechanism. TMZ triggered the endocytic trafficking of serine phosphorylated EGFRvIII. Moreover, phosphorylation and endocytosis were abrogated by the selective p38 inhibitor SB203580, but not gefitinib, indicating that EGFRvIII is recruited to p38-mediated non-canonical endocytosis. The combination of TMZ and SB203580 also showed potential inhibitory effects on the proliferation and motility of glioblastoma cells.

  • Fei Chen, Dan Yang, Xiao-Yu Cheng, Hui Yang, Xin-He Yang, He-Tao Liu, ...
    2021 年 44 巻 11 号 p. 1688-1696
    発行日: 2021/11/01
    公開日: 2021/11/01
    [早期公開] 公開日: 2021/08/25
    ジャーナル フリー HTML

    Microglial activation and neuroinflammation induced by amyloid β (Aβ) play pivotal roles in Alzheimer’s disease (AD) pathogenesis. Astragaloside IV (AS-IV) is one of the major active compounds of the traditional Chinese medicine Astmgali Radix. It has been reported that AS-IV could protect against Aβ-induced neuroinflammation and cognitive impairment, but the underlying mechanisms need to be further clarified. In this study, the therapeutic effects of AS-IV were investigated in an oligomeric Aβ (oAβ) induced AD mice model. The effects of AS-IV on microglial activation, neuronal damage and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression were further studied. Different doses of AS-IV were administered intragastrically once a day after intracerebroventricularly oAβ injection. Results of behavioral experiments including novel object recognition (NOR) test and Morris water maze (MWM) test revealed that AS-IV administration could significantly ameliorate oAβ-induced cognitive impairment in a dose dependent manner. Enzyme linked immunosorbent assay (ELISA) results showed that increased levels of reactive oxygen species (ROS), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and IL-6 in hippocampal tissues induced by oAβ injection were remarkably inhibited after AS-IV treatment. OAβ induced microglial activation and neuronal damage was significantly suppressed in AS-IV-treated mice brain, observed in immunohistochemistry results. Furthermore, oAβ upregulated protein expression of NADPH oxidase subunits gp91phox, p47phox, p22phox and p67phox were remarkably reduced by AS-IV in Western blotting assay. These results revealed that AS-IV could ameliorate oAβ-induced cognitive impairment, neuroinflammation and neuronal damage, which were possibly mediated by inhibition of microglial activation and down-regulation of NADPH oxidase protein expression. Our findings provide new insights of AS-IV for the treatment of neuroinflammation related diseases such as AD.

  • Han-Kyul Nam, So-Ra Jeong, Min Cheol Pyo, Sang-Keun Ha, Mi-Hyun Nam, K ...
    2021 年 44 巻 11 号 p. 1697-1706
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML
    電子付録

    Advanced glycation end products (AGEs) are the products formed through a non-enzymatic reaction of reducing sugars with proteins or lipids. There is a potential for toxicity in the case of AGEs produced through glycation with dicarbonyl compounds including methylglyoxal, glyoxal, and 3-deoxyglucosone. The AGEs bind the receptor for advanced glycation end products (RAGE) and stimulate the mitogen-activated protein (MAP) kinase signaling pathway that can increase the production of matrix metalloproteinases (MMPs). In addition, AGE-induced protein kinase B (Akt) signaling can promote cancer cell proliferation and contribute to many diseases such as kidney cancer. In light of the lack of extensive study of the relationship between methylglyoxal-induced AGEs (AGE4) and renal cancer, we studied the proliferous and anti-apoptotic effects of AGE4 on renal cell carcinoma (RCC) in this study. AGE4 treatment was involved in the proliferation and migration of RCC cells in vitro by upregulating proliferating cell nuclear antigen (PCNA) and MMPs while suppressing apoptotic markers such as Bax and caspase 3. Moreover, Akt and extracellular-signal-regulated kinase (ERK) were phosphorylated in RCC cells with AGE4 treatment. As a result, this study demonstrated that AGE4-RAGE axis can promote the growth ability of RCC by inducing PCNA, MMPs, and inhibiting apoptosis in RCC via the Akt and ERK signaling pathways.

  • Sukanjana Kamlungmak, Titpawan Nakpheng, Sunisa Kaewpaiboon, Muhammad ...
    2021 年 44 巻 11 号 p. 1707-1716
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Mupirocin nanoparticle-loaded hydrogel (MLH) was successfully developed. This study focused on the safety of cell lines and the biocompatibility of MLH for wound healing in rat models. MLH was assessed by an analysis of cytotoxicity and the secretion of inflammatory cytokines in cell lines. The cytocompatibility of MLH was compared with mupirocin ointment on full-thickness burn wounds in rats. The results indicated that MLH and blank hydrogel had no toxicity to human epidermal keratinocytes and human fibroblast cells. MLH inhibited lipopolysaccharide (LPS) activity in macrophage-like cells resulting in low nitric oxide production and reduced inflammatory cytokine production (interleukin (IL)-1β) compared with a positive control (LPS only). In burn wounds, MLH and hydrogel healed the wound better than the other groups determined by wound contraction, reduced secretion, and the generation of new blood vessels, as well as promotion of hair follicle cells. Better granulation tissue proliferation, less necrosis, and a lower degree of inflammation were found in the MLH and blank hydrogel than in the mupirocin ointment. The hydrogel group reduced the macrophages (CD68) on day 14 at the edge of the wound. On day 28, T cells (CD3), B cells (CD20), and CD68+ cells were concentrated in the deeper subcutaneous tissue. Additionally, the transforming growth factor β1 (TGF-β1) concentration and matrix prometalloproteinase-2/tissue inhibitor of metalloproteinases-2 ratio in the MLH and hydrogel groups were less than those in the other groups. The MLH formulation was safe and effective in burn wound healing. Therefore, MLH formulations are promising candidates for further evaluation in clinical trials.

  • Kazuyuki Kitazawa, Nanako Nagasawa-Shimura, Kazunori Tanaka, Mina Musa ...
    2021 年 44 巻 11 号 p. 1717-1723
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML
    電子付録

    Acetylcholine (ACh), a quaternary ammonium cation, is known as one of the itch inducer in atopic dermatitis (AD), an inflammatory skin disease with intense itching. Previous research has reported accumulation of ACh in lesional site of AD patients. Generally, ACh is metabolized by cholinesterase (ChE). Therefore, one of the causes of ACh accumulation may be the suppression of ChE activity. Increased levels of the multifunctional bioactive sphingolipid sphingosylphosphorylcholine (SPC) have also been detected in AD. Since SPC possesses a quaternary ammonium cation, like ACh, it is possible that SPC affects the activity of ChE catalyzing ACh metabolization. We investigated whether SPC influences the activity of ChE by performing enzymatic analysis of ChE in the presence of SPC. We found that SPC strongly suppressed acetylcholinesterase (AChE) activity, but the suppression of butyrylcholinesterase by SPC was quite low. The Michaelis constant (Km) of AChE in the presence of SPC increased, and the maximum velocity (Vmax) decreased, indicating that SPC acts as mixed-type inhibitor for AChE. The analysis of SPC analogs clarified the importance of both the quaternary ammonium cation and the carbon chain length of SPC for the AChE inhibitory effect and showed that SPC was unique in AChE inhibition among the sphingolipids in this study. These findings indicate a novel function of SPC on AChE inhibition. Thus, the inhibition activity of SPC may be a factor in the increase of ACh in AD.

  • Ziying Dai, Xuan Zhang, Wuyan Li, Junxia Tang, Tingting Pan, Chenru Ma ...
    2021 年 44 巻 11 号 p. 1724-1731
    発行日: 2021/11/01
    公開日: 2021/11/01
    [早期公開] 公開日: 2021/09/02
    ジャーナル フリー HTML
    電子付録

    Salidroside is reported to have a wide range of pharmacological properties and has been proven to play a key anti-cancer effect. This study investigated the effects of purified salidroside, an ingredient of Rhodiola rosea, on the proliferation of two human gastric cancer cell lines and further investigating its possible molecular mechanisms. We verified that salidroside exerts a dose-dependent inhibitory effect on the proliferation of SGC-7901 and MKN-45 human gastric cancer cells. Moreover, salidroside can induce cell apoptosis, which was accompanied by an increase in nuclear fragmentation. In addition, salidroside inhibited glycolysis, as evidenced by the reduced expression levels of the glycolysis-related enzymes pyruvate kinase isoenzyme M2 (PKM2), enolase 1 (ENO1) and glucose transporter 1 (GLUT1), which could play important roles in the metabolism of gastric cancer cells. Further investigation showed that salidroside exerted potent anti-proliferative effects by inhibiting glycolysis in human gastric cancer cells in vitro. In vivo, xenograft tumors treated with salidroside were significantly smaller than those in the control animals. Therefore, salidroside could be a promising therapeutic prospect in the treatment of gastric cancer.

  • Haitong Zhang, Jiajia Guo, Sheng Cui, Yewen Zhou
    2021 年 44 巻 11 号 p. 1732-1737
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Doxorubicin (DOX) is an effective anticancer anthracycline drug; however, the cardiotoxicity limits its application. The aim of the present study was to investigate the potential protective effect of taurine against DOX-induced chronic cardiotoxicity in mice. We found that exogenous supplementation of taurine can inhibit the weight loss of mice caused by DOX. The increased activity of myocardial enzymes creatine kinase (CK) and lactate dehydrogenase (LDH) in response to DOX treatment were significantly hampered. In addition, taurine supplementation alleviated the decrease in superoxide dismutase (SOD) activity, glutathione (GSH) content, glutathione peroxidase 4 (Gpx4) expression, and the increase in malondialdehyde (MDA) content caused by DOX. Besides, taurine alleviated myocardial myofibrillar disruption and mitochondrial edema. Furthermore, our results showed that taurine decreased the expressions of cleaved caspase-3 and Bax/Bcl2, thereby inhibiting apoptosis. These collective data demonstrated that exogenous taurine supplementation has a potentially protective effect against the myocardial damage caused by doxorubicin in mice by enhancing antioxidant capacity and reducing oxidative damage and apoptosis.

  • Yue Li, Yong Zhou, Miaoran Wang, Xiaojing Lin, Yunqi Zhang, Irakoze La ...
    2021 年 44 巻 11 号 p. 1738-1745
    発行日: 2021/11/01
    公開日: 2021/11/01
    [早期公開] 公開日: 2021/09/01
    ジャーナル フリー HTML

    Ampelopsin, a flavonoid with a wide variety of biological activities, has been proposed to be a potent antitumor agent. However, the mechanism by which Ampelopsin shows anti-breast cancer activity remains unclear. Therefore, this study will explore the mechanism of Ampelopsin’s anti-breast cancer activity by culturing MDA-MB-231 and MCF-7 breast cancer cells. Cell Counting Kit-8 (CCK-8) method and plate cloning method were used to detect the proliferation inhibition of breast cancer cells. Fluorescence microscopy was used to detect mitochondrial membrane potential (MMP). 2’,7’-Dichlorodihydrofluorescein diacetate (DCFH-DA) method was used to determine the content of intracellular reactive oxygen species (ROS). Hoechst 33258 staining was used to detect the apoptotic morphological changes. Transmission electron microscope was used to observe the mitochondrial structure. Western blot was used to detect the protein expression of Bax and Bcl-2. The results showed that Ampelopsin could significantly inhibit the proliferation of breast cancer cells, and promote cells apoptosis. In addition, the occurrence of apoptosis in breast cancer cells was associated with mitochondrial dysfunction, including the loss of mitochondrial membrane potential, the production of large amounts of reactive oxygen species, and the up-regulation of Bax/Bcl-2 expression. In conclusion, Ampelopsin-induced mitochondria damage leads to loss of mitochondria membrane potential, overproduction of ROS and activation of Bax, increasing mitochondria membrane permeability and ultimately inducing breast cell apoptosis. These findings provided a new perspective on the role of Ampelopsin in breast cancer prevention and treatment.

  • Kana Yasufuku, Katsumi Koike, Mika Kobayashi, Hiroki Chiba, Motoji Kit ...
    2021 年 44 巻 11 号 p. 1746-1751
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Tramadol is a weak opioid that produces analgesic effect via both the μ-opioid receptor (MOR) and non-opioid targets. Constipation is the most common opioid-related side effect in patients with cancer and non-cancer pain. However, the contribution of MOR to tramadol-induced constipation is unclear. Therefore, we used naldemedine, a peripherally acting MOR antagonist, and MOR-knockout mice to investigate the involvement of peripheral MOR in tramadol-induced constipation using a small intestinal transit model. A single dose of tramadol (3–100 mg/kg, per os (p.o.)) inhibited small intestinal transit dose-dependently in rats. Naldemedine (0.01–10 mg/kg, p.o.) blocked the inhibition of small intestinal transit induced by tramadol (30 mg/kg, p.o.) in rats. The transition rate increased dose-dependently over the range of naldemedine 0.01–0.3 mg/kg, and complete recovery was observed at 0.3–10 m/kg. Additionally, tramadol (30 and 100 mg/kg, subcutaneously (s.c.)) inhibited small intestinal transit in wild-type mice but not in MOR-knockout mice. These results suggest that peripheral MOR participates in tramadol-induced constipation.

  • Yoshihiro Takeda, Kenichi Ishibashi, Yumi Kuroda, Gen-ichi Atsumi
    2021 年 44 巻 11 号 p. 1752-1758
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML
    電子付録

    In the endoplasmic reticulum (ER), accumulation of abnormal proteins with malformed higher-order structures activates signaling pathways (inositol-requiring enzyme 1α (IRE1α)/X-box binding protein 1 (XBP-1) pathway, protein kinase RNA-activated-like endoplasmic reticulum kinase (PERK)/CCAAT/enhancer binding protein-homologous protein (CHOP) pathway and activating transcription factor 6α (ATF6α) pathway) that result in a cellular response suppressing the production of abnormal proteins or inducing apoptosis. These responses are collectively known as the unfolded protein response (UPR). Recently, it has been suggested that the UPR induced by saturated fatty acids in hepatocytes and pancreatic β cells is involved in the development of metabolic diseases such as diabetes. The effect of palmitate, a saturated fatty acid, on the UPR has also been investigated in adipocytes, which are associated with the development of metabolic disorders, but the results were inconclusive. Therefore, as the major saturated fatty acids present in the daily diet are palmitate and stearate, we examined the effects of these saturated fatty acids on UPR in adipocytes. Here, we show that saturated fatty acids caused limited activation of the UPR in adipocytes. Exposure to stearate for several hours elevated the ratio of spliced XBP-1 mRNA, and this effect was stronger than that of palmitate. Moreover, the phosphorylation level of IRE1α, upstream of XBP-1 and expression levels of its downstream targets such as DNAJB9 and Pdia6 were elevated in 3T3-L1 adipocytes exposed to stearate. On the other hand, stearate did not affect the phosphorylation of PERK, its activation of CHOP, or the cleavage of ATF6α. Thus, in adipocytes, exposure to stearate activates the UPR via the IRE1α/XBP-1 pathway, but not the PERK/CHOP and ATF6α pathway.

  • Shotaro Michinaga, Kazuya Onishi, Kahori Shimizu, Hiroyuki Mizuguchi, ...
    2021 年 44 巻 11 号 p. 1759-1766
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Vasogenic edema results from blood–brain barrier (BBB) disruption after traumatic brain injury (TBI), and although it can be fatal, no promising therapeutic drugs have been developed as yet. Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable channel that is sensitive to temperature and osmotic pressure. As TRPV4 is known to be responsible for various pathological conditions following brain injury, we investigated the effects of pharmacological TRPV4 antagonists on TBI-induced vasogenic edema in this study. A TBI model was established by inflicting fluid percussion injury (FPI) in the mouse cerebrum and cultured astrocytes. Vasogenic brain edema and BBB disruption were assessed based on brain water content and Evans blue (EB) extravasation into brain tissue, respectively. After FPI, brain water content and EB extravasation increased. Repeated intracerebroventricular administration of the specific TRPV4 antagonists HC-067047 and RN-1734 dose-dependently reduced brain water content and alleviated EB extravasation in FPI mice. Additionally, real-time PCR analysis indicated that administration of HC-067047 and RN-1734 reversed the FPI-induced increase in mRNA levels of endogenous causal factors for BBB disruption, including matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor-A (VEGF-A), and endothelin-1 (ET-1). In astrocytes, TRPV4 level was observed to be higher than that in brain microvascular endothelial cells. Treatment with HC-067047 and RN-1734 inhibited the increase in mRNA levels of MMP-9, VEGF-A, and ET-1 in cultured astrocytes subjected to in vitro FPI. These results suggest that pharmacological inhibition of TRPV4 is expected to be a promising therapeutic strategy for treating TBI-induced vasogenic edema.

  • Tasuku Yokoyama, Shigeru Yamauchi, Keishi Yamagata, Yuta Kaneshiro, Yu ...
    2021 年 44 巻 11 号 p. 1767-1774
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML
    電子付録

    This study investigated the impact of polymorphisms of metabolic enzymes on plasma concentrations of cilostazol and its metabolites, and the influence of the plasma concentrations and polymorphisms on the cardiovascular side effects in 30 patients with cerebral infarction. Plasma concentrations of cilostazol and its active metabolites, and CYP3A5*3 and CYP2C19*2 and *3 genotypes were determined. The median plasma concentration/dose ratio of OPC-13213, an active metabolite by CYP3A5 and CYP2C19, was slightly higher and the median plasma concentration rate of cilostazol to OPC-13015, another active metabolite by CYP3A4, was significantly lower in CYP3A5*1 carriers than in *1 non-carriers (p = 0.082 and p = 0.002, respectively). The CYP2C19 genotype did not affect the pharmacokinetics of cilostazol. A correlation was observed between changes in pulse rate from the baseline and plasma concentrations of cilostazol (R = 0.539, p = 0.002), OPC-13015 (R = 0.396, p = 0.030) and OPC-13213 (R = 0.383, p = 0.037). A multiple regression model, consisting of factors of the plasma concentration of OPC-13015, levels of blood urea nitrogen, and pulse rate at the start of the therapy explained 55.5% of the interindividual variability of the changes in pulse rate. These results suggest that plasma concentrations of cilostazol and its metabolites are affected by CYP3A5 genotypes, and plasma concentration of OPC-13015, blood urea nitrogen, and pulse rate at the start of therapy may be predictive markers of cardiovascular side effects of cilostazol in patients with cerebral infarction.

    Editor’s picks

    Cilostazol is metabolized to two active metabolites in humans. This study investigated the influence of the plasma concentrations of cilostazol and the metabolites on pulse rate in patients with cerebral infarction. Polymorphisms of metabolic enzymes significantly influenced plasma disposition of OPC-13015, a metabolite by CYP3A4, and OPC-13213, another metabolite by CYP3A5 and CYP2C19. A multiple regression model, consisting of factors of the plasma concentration of OPC-13015, levels of blood urea nitrogen, and pulse rate at the start of cilostazol therapy explained 55.5% of the interindividual variability of the changes in pulse rate before and after the treatment.

  • Tomonori Miura, Yusuke Kamiya, Norie Murayama, Makiko Shimizu, Hiroshi ...
    2021 年 44 巻 11 号 p. 1775-1780
    発行日: 2021/11/01
    公開日: 2021/11/01
    [早期公開] 公開日: 2021/08/26
    ジャーナル フリー HTML

    Aniline and its dimethyl derivatives reportedly become haematotoxic after metabolic N-hydroxylation of their amino groups. The plasma concentrations of aniline and its dimethyl derivatives after single oral doses of 25 mg/kg in rats were quantitatively measured and semi-quantitatively estimated using LC–tandem mass spectrometry. The quantitatively determined elimination rates of aniline; 2,4-dimethylaniline; and 3,5-dimethylaniline based on rat plasma versus time curves were generally rapid compared with those of 2,3-; 2,5-; 2,6-; and N,2-dimethylaniline. The primary acetylated metabolites of aniline; 2,4-dimethylaniline; and 3,5-dimethylaniline, as semi-quantitatively estimated based on their peak areas in LC analyses, were more extensively formed than those of 2,3-; 2,5-; 2,6-; and N,2-dimethylaniline. The areas under the curve of unmetabolized (remaining) aniline and its dimethyl derivatives estimated using simplified physiologically based pharmacokinetic models (that were set up using the experimental plasma concentrations) showed an apparently positive correlation with the reported lowest-observed-effect levels for haematotoxicity of these chemicals. In the case of 2,4-dimethylaniline, a methyl group at another C4-positon would be one of the determinant factors for rapid metabolic elimination to form aminotoluic acid. These results suggest that rapid and extensive metabolic activation of aniline and its dimethyl derivatives occurred in rats and that the presence of a methyl group at the C2-positon may generally suppress fast metabolic rates of dimethyl aniline derivatives that promote metabolic activation reactions at NH2 moieties.

    Editor’s picks

    Aniline and its dimethyl derivatives reportedly become haematotoxic after metabolic N-hydroxylation of their amino groups. The elimination rate of 3,5-dimethylaniline based on rat plasma versus time curves was rapid compared with that of 2,6-dimethylaniline after single oral doses of 25 mg/kg. The areas under the curve of unmetabolized (remaining) dimethylaniline derivatives estimated using pharmacokinetic models showed an apparently positive correlation with the reported lowest-observed-effect levels for haematotoxicity of these chemicals. These results suggest that the presence of a methyl group at the C2-positon may generally suppress fast metabolic rates of dimethylaniline derivatives that promote metabolic activation reactions at NH2 moieties.

  • Hajime Hiyama, Aya Ozawa, Bunsho Makino, Yosuke Yoshioka, Ryo Ohsawa
    2021 年 44 巻 11 号 p. 1781-1789
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML
    電子付録

    Dried terrestrial stems of Ephedra sinica are known as ‘Ephedra herb.’ The pharmacological effects are mainly related to two major ingredients, (−)-ephedrine and (+)-pseudoephedrine (total alkaloids which are defined in Japanese Pharmacopoeia, TA). In this study, in order to aid in cultivation and breeding, the stability of TA content and stem dry weight of 46 E. sinica genets was evaluated from the first year of transplantation to the sixth year. TA content and composition ratio of these genets were stable after the second year, and dry weight was stable after the fourth year. These traits showed high inter-genet variability but low annual variability for each genet. Additionally, rank correlation coefficients of each trait among the genets were high. There was no significant correlation between these traits. Furthermore, to assess the reproducibility of these traits in clones, we evaluated TA content and dry weight of three clonal lines with high TA contents. TA content and composition ratio of the clonal lines were also stable after the second year of transplantation, and dry weight of the clonal lines was also stable after the fourth year. Moreover, TA content and composition ratio in each clonal line were comparable with those of each original genet after the second year. These results suggested that ephedrine alkaloids content and dry weight of E. sinica plants are stable, and that these traits are highly reproducible in clones. Therefore, selection breeding of E. sinica using vegetative propagation can be effective for high and stable quality of Ephedra herb.

Notes
  • Tomotaka Tanabe, Katsushiro Miyamoto, Kenjiro Nagaoka, Hiroshi Tsujibo ...
    2021 年 44 巻 11 号 p. 1790-1795
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Vibrio vulnificus can utilize the xenosiderophore desferrioxamine B (DFOB) as an iron source under iron-restricted conditions. We previously identified in V. vulnificus that transcription of the desA gene encoding the outer membrane receptor for ferrioxamine B (FOXB) is activated by the AraC-type transcriptional regulator encoded by desR together with DFOB. In this study, we overexpressed and purified DesR as a glutathione S-transferase-fused protein and examined interaction between the promoter region of desA and DesR. Electrophoretic mobility shift assay (EMSA) revealed that DesR directly binds to the regulatory region of desA, and this binding was enhanced by the presence of DFOB in a concentration-dependent manner, while the presence of FOXB did not affect the potentiation of their binding. Moreover, EMSA identified that DNA fragments lacking a probable DesR binding sequence were unable to form complexes with DesR. Finally, deoxyribonuclease I footprinting assay demonstrated that the DNA binding sequence of DesR is located between −27 and −50 nucleotides upstream of the desA transcription start site. These results strongly indicate that DesR can directly activate the transcription of desA in cooperation with DFOB, which acts as a coactivator for DesR.

  • Akira Takahara, Satoshi Kawakami, Megumi Aimoto, Yoshinobu Nagasawa
    2021 年 44 巻 11 号 p. 1796-1799
    発行日: 2021/11/01
    公開日: 2021/11/01
    ジャーナル フリー HTML

    Torsadogenic effects of ivabradine, an inhibitor of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, were assessed in an in vivo proarrhythmia model of acute atrioventricular block rabbit. Ivabradine at 0.01, 0.1, and 1 mg/kg was intravenously administered to isoflurane-anesthetized rabbits (n = 5) in the stable idioventricular rhythm. Ivabradine at 0.01 and 0.1 mg/kg hardly affected the atrial and ventricular automaticity, QT interval, or the monophasic action potential duration of the ventricle. Additionally administred ivabradine at 1 mg/kg decreased the atrial and ventricular rate significantly but increased the QT interval and duration of the monophasic action potential. Meanwhile, torsade de pointes arrhythmias were detected in 1 out of 5 animals and in 2 out of 5 animals after the administration of 0.1 and 1 mg/kg, respectively. Importantly, torsade de pointes arrhythmias could be observed only in 2 rabbits showing more potent suppressive effects on ventricular automaticity. These results suggest that the torsadogenic potential of ivabradine may become evident when its expected bradycardic action appears more excessively.

feedback
Top