Biological Sciences in Space
Online ISSN : 1349-967X
Print ISSN : 0914-9201
ISSN-L : 0914-9201
18 巻, 4 号
選択された号の論文の9件中1~9を表示しています
  • Ken Ohnishi, Takeo Ohnishi
    2004 年 18 巻 4 号 p. 201-205
    発行日: 2004年
    公開日: 2005/11/25
    ジャーナル フリー
    Many space experiments are scheduled for the International Space Station (ISS). Completion of the ISS will soon become a reality. Astronauts will be exposed to low-level background components from space radiation including heavy ions and other high-linear energy transfer (LET) radiation. For long-term stay in space, we have to protect human health from space radiation. At the same time, we should recognize the maximum permissible doses of space radiation. In recent years, physical monitoring of space radiation has detected about 1 mSv per day. This value is almost 150 times higher than that on the surface of the Earth. However, the direct effects of space radiation on human health are currently unknown. Therefore, it is important to measure biological dosimetry to calculate relative biological effectiveness (RBE) for human health during long-term flight. The RBE is possibly modified by microgravity. In order to understand the exact RBE and any interaction with microgravity, the ISS centrifugation system will be a critical tool, and it is hoped that this system will be in operation as soon as possible.
  • Hiroaki Terato, Hiroshi Ide
    2004 年 18 巻 4 号 p. 206-215
    発行日: 2004年
    公開日: 2005/11/25
    ジャーナル フリー
    Clustered DNA damage (locally multiply damaged site) is thought to be a critical lesion caused by ionizing radiation, and high LET radiation such as heavy ion particles is believed to produce high yields of such damage. Since heavy ion particles are major components of ionizing radiation in a space environment, it is important to clarify the chemical nature and biological consequences of clustered DNA damage and its relationship to the health effects of exposure to high LET particles in humans. The concept of clustered DNA damage emerged around 1980, but only recently has become the subject of experimental studies. In this article, we review methods used to detect clustered DNA damage, and the current status of our understanding of the chemical nature and repair of clustered DNA damage.
  • Tetsuya Kawata, Hisao Ito, Kerry George, Honglu Wu, Francis A. Cucino ...
    2004 年 18 巻 4 号 p. 216-223
    発行日: 2004年
    公開日: 2005/11/25
    ジャーナル フリー
    Measurements of chromosome aberrations in peripheral blood lymphocytes are currently the most sensitive and reliable indicator of radiation exposure that can be used for biological dosimetry. This technique has been implemented recently to study radiation exposures incurred by astronauts during space flight, where a significant proportion of the dose is delivered by high-LET particle exposure. Traditional methods for the assessing of cytogenetic damage in mitotic cells collected at one time point after exposure may not be suitable for measuring high-LET radiation effects due to the drastic cell cycle perturbations and interphase cell death induced by this type of exposure. In this manuscript we review the recent advances in methodology used to study high-LET induced cytogenetic effects and evaluate the use of chemically-induced Premature Chromosome Condensation (PCC) as an alternative to metaphase analysis. Published data on the cytogenetic effects of in vitro exposures of high-LET radiation is reviewed, along with biodosimetry results from astronauts after short or long space missions.
  • Fumio Yatagai
    2004 年 18 巻 4 号 p. 224-234
    発行日: 2004年
    公開日: 2005/11/25
    ジャーナル フリー
    The relative biological-effectiveness of radiation is increased when cells or tissue are exposed to densely ionizing (high-LET) radiation. A large number of studies focus on the following aspects of the biological effects of high-LET radiation: (i) basic understanding of radiation damage and repair; (ii) developing radiotherapy protocols for accelerated charged particles; and (iii) estimation of human risks from exposure to high-LET heavy charged particles. The increased lethal effectiveness (cell inactivation) of high-LET radiation contributes to new methods for using radiation therapy, but it is also necessary to study the enhanced mutagenic effect of high LET radiation, because higher frequencies of mutation can be expected to provide higher rates of carcinogenicity with human exposure. It is important to note that both measures of biological effectiveness (lethality and mutagenicity) depend on the quality of radiation, the dose, dose-rate effects, and the biological endpoints studied. This paper is intended to provide a review of current research on the mutagenic effects of high-LET radiation, and is organized into three sections. First, are descriptions of the induced mutations studied with various detection systems (section 1) because the detectable mutations induced by ionizing radiation, including heavy-ions, depend largely on the detection system used. Second is a discussion of the biological significance of the dependence of induced mutations on LET (section 2). This is related to the molecular nature of radiation lesions and to the repair mechanisms used to help cells recover from such damage. Finally, applications of mutation detection systems for studies in space (section 3) are described, in which the carcinogenic effects of space environmental radiation are considered.
  • Yasuhiko Kobayashi, Tomoo Funayama, Seiichi Wada, Yoshiya Furusawa, Mi ...
    2004 年 18 巻 4 号 p. 235-240
    発行日: 2004年
    公開日: 2005/11/25
    ジャーナル フリー
    We have established a single cell irradiation system, which allows selected cells to be individually hit with defined number of heavy charged particles, using a collimated heavy-ion microbeam apparatus at JAERI-Takasaki. This system has been developed to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures. Individual cultured cells grown in special dishes were irradiated in the atmosphere with a single or defined numbers of 18.3 MeV⁄amu 12C, 13.0 MeV⁄amu 20Ne, and 11.5 MeV⁄amu 40Ar ions. Targeting and irradiation of the cells were performed automatically at the on-line microscope of the microbeam apparatus according to the positional data of the target cells obtained at the off-line microscope before irradiation. The actual number of particle tracks that pass through cell nuclei was detected with prompt etching of the bottom of the cell dish made of ion track detector TNF-1 (modified CR-39), with alkaline-ethanol solution at 37°C for 15-30 minutes. Using this system, separately inoculated Chinese hamster ovary cells, confluent normal human fibroblasts, and single plant cells (tobacco protoplasts) have been irradiated. These are the first studies in which single-ion direct hit effect and the bystander effect have been investigated using a high-LET heavy particle microbeam.
  • Masao Suzuki, Chizuru Tsuruoka
    2004 年 18 巻 4 号 p. 241-246
    発行日: 2004年
    公開日: 2005/11/25
    ジャーナル フリー
    Radiation-induced damage to living cells results from either a direct hit to cellular DNA, or from indirect action which leads to DNA damage from radiation produced radicals. However, in recent years there is evidence that biological effects such as cell killing, mutation induction, chromosomal damage and modification of gene expression can occur in a cell population exposed to low doses of alpha particles. In fact these doses are so low that not all cells in the population will be hit directly by the radiation. Using a precision alpha-particle microbeam, it has been recently demonstrated that irradiated target cells can induce a bystander mutagenic response in neighboring “bystander” cells which were not directly hit by alpha particles. Furthermore, these results suggest that gap-junction mediated cell-to-cell communication plays a critical role in this bystander phenomenon. The purpose of this section is to describe recent studies on bystander biological effects. The recent work described here utilized heavy charged particles for irradiation, and investigated the role of gap-junction mediated cell-cell communication in this phenomenon.
  • Hideki Matsumoto, Akihisa Takahashi, Takeo Ohnishi
    2004 年 18 巻 4 号 p. 247-254
    発行日: 2004年
    公開日: 2005/11/25
    ジャーナル フリー
    A classical paradym of radiation biology asserts that all radiation effects on cells, tissues and organisms are due to the direct action of radiation. However, there has been a recent growth of interest in the indirect actions of radiation including the radiation-induced adaptive response, the bystander effect, low-dose hypersensitivity, and genomic instability, which are specific modes of stress exhibited in response to low-dose/low-dose rate radiation. This review focuses on the radiation-induced bystander effect and the adaptive response, provides a description of the two phenomena, and discusses the contribution of the former to the latter.
  • Akihisa Takahashi, Takeo Ohnishi
    2004 年 18 巻 4 号 p. 255-260
    発行日: 2004年
    公開日: 2005/11/25
    ジャーナル フリー
    It is believed that ultraviolet (UV) radiation from the sun participated in events related to the chemical evolution and birth of life on the primitive Earth. Although UV radiation would be also a driving force for the biological evolution of life on Earth, life space of the primitive living organisms would be limited in the UV-shielded place such as in the water at an early stage of the evolution of life. After the formation of stratospheric ozone layer through the production of oxygen by photoautotroph, living organisms were able to expand their domain from water to land. As a result, now, many kinds of living organisms containing human beings are flourishing on the ground. In the near future, increased transmission of harmful solar UV radiation may reach the Earth's surface due to stratospheric ozone layer depletion. In order to learn more about the biological effects of solar UV radiation with or without interruption by the ozone layer, the utilization of an Exposed Facility on the International Space Station is required. Experiments proposed for this facility would provide a tool for the scientific investigation of processes involved in the birth and evolution of life on Earth, and could also demonstrate the importance of protecting the Earth's future environment from future ozone layer depletion.
  • Mami Sugano, Yuriko Nakagawa, Hiroshi Nyunoya, Teruko Nakamura
    2004 年 18 巻 4 号 p. 261-266
    発行日: 2004年
    公開日: 2005/11/25
    ジャーナル フリー
    Expressions of the gibberellin biosynthesis gene were investigated in a normal upright type and a gravi-response mutant, a weeping type of Japanese flowering cherry (Prunus spachiana), that is unable to support its own weight and elongates downward. A segment of the gibberellin 3β-hydroxylase cDNA of Prunus spachiana (Ps3ox), which is responsible for active gibberellin synthesis, was amplified by using real-time RT-PCR. The content of Ps3ox mRNA in the weeping type was much greater than that in the upright type, while the endogenous gibberellin level was much higher in the elongating zone of the weeping type. These results suggest that the amount and distribution of synthesized gibberellin regulate secondary xylem formation, and the unbalanced distribution of gibberellin affects the gravi-response of the Prunus tree.
feedback
Top