Clinical Pediatric Endocrinology
Online ISSN : 1347-7358
Print ISSN : 0918-5739
ISSN-L : 0918-5739
Volume 25, Issue 4
Displaying 1-4 of 4 articles from this issue
Original Article
  • Yoko Miyoshi, Kie Yasuda, Makiko Tachibana, Hisao Yoshida, Emiko Miyas ...
    2016 Volume 25 Issue 4 Pages 119-126
    Published: 2016
    Released on J-STAGE: October 19, 2016
    JOURNAL OPEN ACCESS

    Gonadal dysfunction and infertility are major endocrinological late effects among childhood cancer survivors. Chemotherapy and radiation have gonadotoxic effects and diminish the ovarian reserve. The serum concentration of anti-Müllerian hormone (AMH) is a useful marker of ovarian reserve in survivors. We conducted a longitudinal study to investigate the variations of AMH in evaluating the acute and chronic effects of cancer therapy on the ovary. Three young female patients with different hematological diseases were registered, and their medical records were reviewed. Patient 1 with myelodysplastic syndrome received reduced-intensity hematopoietic stem cell transplantation (HSCT) at 10 yr of age. Breast development and menarche occurred spontaneously after HSCT; however, AMH level became undetectable and gonadotropin did not increase. Patient 2 with acute lymphoblastic leukemia had been receiving chemotherapy since 11 yr of age. AMH level became undetectable but increased after chemotherapy and was associated with regular menstruation. Patient 3 with acute myeloid leukemia received chemotherapy at 13 yr of age and myeloablative HSCT at 14 yr of age. AMH level became undetectable after HSCT, and the patient developed amenorrhea. These different patterns in the recovery phase demonstrated that the AMH level immediately after the end of cancer therapy is inappropriate for the evaluation of the ovarian reserve.

    Download PDF (648K)
Case Report
  • Marie Mitani, Munehiro Furuichi, Satoshi Narumi, Tomonobu Hasegawa, Mo ...
    2016 Volume 25 Issue 4 Pages 127-134
    Published: 2016
    Released on J-STAGE: October 19, 2016
    JOURNAL OPEN ACCESS

    Pseudohypoaldosteronism type II (PHA II) is a renal tubular disease that causes hyperkalemia, hypertension, and metabolic acidosis. Mutations in four genes (WNK4, WNK1, KLHL3, and CUL3) are known to cause PHA II. We report a patient with PHA II carrying a KLHL3 mutation, who also had congenital hypopituitarism. The patient, a 3-yr-old boy, experienced loss of consciousness at age 10 mo. He exhibited growth failure, hypertension, hyperkalemia, and metabolic acidosis. We diagnosed him as having PHA II because he had low plasma renin activity with normal plasma aldosterone level and a low transtubular potassium gradient. Further investigations revealed defective secretion of GH and gonadotropins and anterior pituitary gland hypoplasia. Genetic analyses revealed a previously known heterozygous KLHL3 mutation (p.Leu387Pro), but no mutation was detected in 27 genes associated with congenital hypopituitarism. He was treated with sodium restriction and recombinant human GH, which normalized growth velocity. This is the first report of a molecularly confirmed patient with PHA II complicated by congenital hypopituitarism. We speculate that both GH deficiency and metabolic acidosis contributed to growth failure. Endocrinological investigations will help to individualize the treatment of patients with PHA II presenting with growth failure.

    Download PDF (760K)
Mutation-in-Brief
feedback
Top