CYTOLOGIA
Online ISSN : 1348-7019
Print ISSN : 0011-4545
Volume 1, Issue 1
Displaying 1-6 of 6 articles from this issue
  • H. KIHARA
    1929 Volume 1 Issue 1 Pages 1-15
    Published: 1929
    Released on J-STAGE: March 19, 2009
    JOURNAL FREE ACCESS
    Download PDF (2825K)
  • I. The Cytology of F1 Hybrids of B. Napella and Various Other Species with 10 Chromosomes
    T. MORINAGA
    1929 Volume 1 Issue 1 Pages 16-27
    Published: 1929
    Released on J-STAGE: March 19, 2009
    JOURNAL FREE ACCESS
    Download PDF (6941K)
  • Y. MIYAJI
    1929 Volume 1 Issue 1 Pages 28-58
    Published: 1929
    Released on J-STAGE: March 19, 2009
    JOURNAL FREE ACCESS
    1. Die verschiedenen Chromosomenzahlen der Viola-Arten sind folgende:
    n=6, 10, 12, 13, 17, 18, 20, 24, 27, 30, 36, 48.
    Sie schwanken also in einem weiten Bereich, and zeigen teils poly-ploide, teils andere Beziehungen. Die von mir festgestellten Chromo-somenzahlen der Viola-Arten nach den Haploidzahlen gebe ich hier wieder: Andererseits existieren sehr viele 10-chromosomige Formen, welche eine besondere Entstehungsweise gehabt haben. Im Anschluss an die Chromosomenphylogenie wurde die Artbildung bei der Gattung besprochen. Viola hätte also auch, wenn ähnliche Beispiele bei anderen Gattungen gefunden würden; in dem verhältnissmaässig kurzen Zeit-raum lokal mutiert.
    10. Für die Zahlenverhältnisse der Chromosomen innerhalb ein and derselben Gattung kann man drei Typen unterscheiden; der eine Typus Viola ist kompliziert, da ausser der polyploiden Reihe noch andere Zahlenreihen in vielen Gruppen erscheinen.
    11. Betrachtet man die Entstehung der aneuploiden Chromosomenzahlen, so ergeben sich fünf Möglichkeiten: Die erstere and zweite werden durch Unregelmässigkeiten in der Sporogenese, die dritte durch die Querteilung der Chromosomen, die vierte durch Verschwinden derselben veranlasst, and für die fünfte Möglichkeit kommen solche Fälle in Betracht, in denen die betreffenden Chromosomenzahlen ursprünglich unabhängig voneinander entstehen.
    Download PDF (6318K)
  • T. SHIMAMURA
    1929 Volume 1 Issue 1 Pages 59-67
    Published: 1929
    Released on J-STAGE: March 19, 2009
    JOURNAL FREE ACCESS
    1. The nucleolus in the egg nucleus is relatively much heavier than the other constituents of the nucleus.
    2. As the proteid vacuoles have almost the same density as the cytoplasm in which they are embedded, they are not thrown into clearly defined zones in the centrifuged egg cell.
    3. In the early proembryo stage, where the 2 or 4 free nuclei are found somewhat above the centre of the egg cell, they cannot be dislocated by the application of a centrifugal force such as used by the writer. This indicates that there is no marked difference in density between these free nuclei and the surrounding cytoplasm.
    4. In the proembryo stage, after the four nuclei have reached the bottom of the egg cell a marked change occurrs in the consistency of the general cytoplasm. The four centrifuged nuclei can be easily moved towards the centrifugal end through the general cytoplasm of the egg cell, indicating a decrease of the density of the egg cytoplasm, rather than an increase of the density of the proembryonal nuclei.
    5. At the eight-nucleate stage, the nuclei of the upper tier can be easily driven out of the tier in a centrifugal direction into the general cytoplasm.
    6. In the egg nucleus Of Pinus Thunbergii fixed with either BENDA'S or CHAMPY's fluid, no clear nuclear membrane is observed, and the nuclear cavity is filled with homogeneous finely granulate fixed substance, while in the material fixed with either FLEMMING'S or BOUIN's fluid clear nuclear membrane is observed, and nuclear cavity shows distinct reticula, being free from finely granulate homogeneous substance.
    I have much pleasure in expressing here my cordial thanks to Emer. Professor K. Fu ii for his kind advice and criticism throughout the course of this experiment, which was chiefly carried on in 1925-1926, and supplemented in the summer of 1927.
    Download PDF (5245K)
  • K. WAKAYAMA
    1929 Volume 1 Issue 1 Pages 68-75
    Published: 1929
    Released on J-STAGE: March 19, 2009
    JOURNAL FREE ACCESS
    Download PDF (4483K)
  • Y TAKENAKA
    1929 Volume 1 Issue 1 Pages 76-83_2
    Published: 1929
    Released on J-STAGE: March 19, 2009
    JOURNAL FREE ACCESS
    1. The gametic and zygotic chromosome numbers of nine species and a variety of Hemerrcallis are determined respectively as follows:
    In polle mother-cell In root-tip cell
    H. flava L. 11 (1n) 22 (2n) H. aurantiaca BAK. 11 (1n) 22 (2n) H. Middendorfii TRAUTV. et MEY. 11 (1n) 22 (2n) H. disticha DONN 11 (1n) 22 (2n) H. longituba MIQ. 11 (1n) 22 (2n) H. minor MILL. 11 (1n) 22 (2n) H. sp. (α) 11 (1n) 22 (2n) H. sp. (β) 11 (1n) 33 (3n) H. fulva L. 11-20 33 (3n) H. disticha var. Kwanso NAKAI 11-20 33 (3n)
    2. H. disticha var. Kwanso is probably an autotriploid species derived from H. disticha. H. fulva too seems to be an autotriploid species.
    3. The cause of sterility in H. fulva and H. disticha var. Kwanso may be ascribed to irregular meiosis, which is common in triploid plants and results in the formation of pollen grains or embryo-sacs in which the normal numerical relation of different chromosomes and consequently of genes are disturbed.
    In concluding, the writer wishes to express his hearty thanks to Emer. Prof. K. FUJII for his kind advice and valuable criticism throughout the course of the work.
    Download PDF (2600K)
feedback
Top