Earth, Planets and Space
Online ISSN : 1880-5981
Print ISSN : 1343-8832
53 巻, 4 号
選択された号の論文の10件中1~10を表示しています
  • Masataka Ando, Manabu Hashimoto, Kelin Wang
    2001 年 53 巻 4 号 p. 233
    発行日: 2001年
    公開日: 2010/03/09
    ジャーナル フリー
  • Yuichiro Tanioka, Kenji Satake
    2001 年 53 巻 4 号 p. 235-241
    発行日: 2001年
    公開日: 2010/03/09
    ジャーナル フリー
    Coseismic slip distribution on the fault plane of the 1946 Nankai earthquake (Mw 8.3) was estimated from inversion of tsunami waveforms. The following three improvements from the previous study (Satake, 1993) were made. (1) Larger number of smaller subfaults is used; (2) the subfaults fit better to the slab geometry; and (3) more detailed bathymetry data are used. The inversion result shows that the agreement between observed and synthetic waveforms is greatly improved from the previous study. In the western half of the source region off Shikoku, a large slip of about 6 m occurred near the down-dip end of the locked zone. The slip on the up-dip or shallow part was very small, indicating a weak seismic coupling in that region. In the eastern half of the source region off Kii peninsula, a large slip of about 3 m extended over the entire locked zone. Large slips on the splay faults in the upper plate estimated from geodetic data (Sagiya and Thatcher, 1999) were not required to explain the tsunami waveforms, suggesting that the large slips were aseismic. Two slip distributions on the down-dip end of the plate interface, one from geodetic data and the other from tsunami waveforms, agree well except for slip beneath Cape Muroto in Shikoku. This suggests that aseismic slip also occurred on the plate interface beneath Cape Muroto.
  • Phil R. Cummins, Takane Hori, Yoshiyuki Kaneda
    2001 年 53 巻 4 号 p. 243-248
    発行日: 2001年
    公開日: 2010/03/09
    ジャーナル フリー
    We consider whether splay fault slip may be a factor influencing the behavior of megathrust earthquakes in the Nankai Trough. Consideration of tsunami inversion results from other studies indicates that slip on one or more splay faults may be particularly important for the segment of the Nankai Trough offshore western Shikoku. These results suggest that during at least twomegathrust earthquakes substantial slip may have occurred on one or more splay faults which cut the island arc crust over 100 km landward of the trench axis. In contrast to smaller subsidiary thrusts in the semi-consolidated and unconsolidated sediments very near the trough axis, the crustal faults considered here could accumulate and release considerable tectonic stress. Through a simple finite element calculation we demonstrate that slip on such faults can release some of the shear stress on the megathrust accumulated through plate subduction, and therefore may have some influence on the behavior of megathrust earthquakes.
  • Manabu Hashimoto
    2001 年 53 巻 4 号 p. 249-259
    発行日: 2001年
    公開日: 2010/03/09
    ジャーナル フリー
    Activity of large earthquakes in southwestern Japan is simulated with a model that incorporates mechanical interactions between faults, including both interplate and intraplate faults. In this simulation, each fault element is assumed to accumulate stress with a constant slip deficit rate and redistribute its accumulated stress to surrounding faults by making a forward (coseismic) slip when the cumulative stress reaches an assumed threshold. The results from the inversion of geodetic data by Hashimoto and Jackson (1993) were used to specify slip deficit rates for these faults. Each fault in this model is divided into four equal-sized elements, two in the length direction and two in the width direction, so that this model can simulate events as small as M6. A complex pattern of seismicity arises from a 10, 000-year run of the simulation. The rate of stress accumulation is not necessarily constant for all faults, which may be attributed to the interaction between faults. It is interesting that fluctuations in the amplitude of stress changes with periods of 1, 500 years or longer are seen for some inland faults. A variety of sizes of events occur according to the number of simultaneously rupturing elements. Smaller events in which only one element on a fault ruptures frequently occur, but large events with three or more rupturing elements are rarely seen. This implies that the difference between geodetic and geological/seismological strain rates might be made up by smaller events. Simulations indicate that two models with 1 initial conditions may separate by a factor of about 20-30 in the state space after hundreds of years. The increase of this distance in the state space slows down or is linear in tome depending on initial conditions.
  • Shoichi Yoshioka, Yoshihiro Ito
    2001 年 53 巻 4 号 p. 261-273
    発行日: 2001年
    公開日: 2010/03/09
    ジャーナル フリー
    We investigated lateral variations of effective elastic thickness of the subducting Philippine Sea plate along the Nankai trough. For this purpose, we applied two-dimensional thin elastic plate bending theory to several profiles almost perpendicular to the trough axis, correcting the effect of thick marine sediments in the Shikoku Basin. The 15 topographic profiles were selected from 61 profiles and were fit to respective theoretical deflection curves by minimization of the L1 norm. Classifying the Shikoku Basin into three regions, namely, the western, the middle, and the eastern regions, we obtained the results that the effective elastic plate thickness tends to decrease gradually from the east of the Ryukyu-Palau ridge to the Kinan seamount chain. This is consistent with heat flow data, seafloor age, formation process of the Shikoku Basin, length of the slab subducted from the Nankai trough, and spatial distribution of subcrustal earthquakes associated with subduction of the Philippine Sea plate.
  • Ray E. Wells, Robert W. Simpson
    2001 年 53 巻 4 号 p. 275-283
    発行日: 2001年
    公開日: 2010/03/26
    ジャーナル フリー
    Geologic and paleomagnetic data from the Cascadia forearc indicate long-term northward migration and clockwise rotation of an Oregon coastal block with respect to North America. Paleomagnetic rotation of coastal Oregon is linked by a Klamath Mountains pole to geodetically and geologically determined motion of the Sierra Nevada block to derive a new Oregon Coast-North America (OC-NA) pole of rotation and velocity field. This long-term velocity field, which is independent of Pacific Northwest GPS data, is interpreted to be the result of Basin-Range extension and Pacific-North America dextral shear. The resulting Oregon Coast pole compares favorably to those derived solely from GPS data, although uncertainties are large. Subtracting the long-term motion from forearc GPS velocities reveals ENE motion with respect to an OC reference frame that is parallel to the direction of Juan de Fuca-OC convergence and decreases inland. We interpret this to be largely the result of subduction-related deformation. The adjusted mean GPS velocities are generally subparallel to those predicted from elastic dislocation models for Cascadia, but more definitive interpretations await refinement of the present large uncertainty in the Sierra Nevada block motion.
  • Dapeng Zhao, Kelin Wang, Garry C. Rogers, Simon M. Peacock
    2001 年 53 巻 4 号 p. 285-293
    発行日: 2001年
    公開日: 2010/03/09
    ジャーナル フリー
    At the Cascadia margin the Juan de Fuca plate is subducting beneath the North America plate, causing active seismicity within both plates. Earthquakes occur down to a maximum depth of 80 km within the descending oceanic plate and to about 30 km in the overriding continental plate. We use a method of seismic tomography to invert 28, 230 P wave arrival times from 2666 local earthquakes that occurred in and around Vancouver Island from 1970 to 1990. The tomography model uses about 30 km horizontal and 12-19 km vertical grid spacing and assumes that the seismic velocity perturbations vary continuously between grid points. Velocity structures can be obtained to a depth of 65 km. The obtained tomographic image shows an extensive low velocity zone above the subducted slab at about 45 km depth and patches of low velocities at shallower depths just seaward of the volcanic front. The deeper extensive low velocity zone may indicate the presence of partially hydrated mantle, most likely serpentinite, as a result of slab dehydration associated with the transformation of metabasalt to eclogite. One of the shallow low velocity patches coincides with an abrupt increase in surface heat flow and may reflect the presence of partial melts or water in the crust.
  • Kelin Wang, Jiangheng He, Herb Dragert, Thomas S. James
    2001 年 53 巻 4 号 p. 295-306
    発行日: 2001年
    公開日: 2010/03/09
    ジャーナル フリー
    Contemporary deformation of the Cascadia forearc consists of an elastic interseismic strain build-up as part of the subduction earthquake deformation “cycle” and a secular deformation primarily in the form of arc-parallel translation and clockwise rotation of forearc blocks. Athree-dimensional (3-D) elastic dislocation model, constrained by vertical deformation data, was developed previously to study the interseismic deformation. In this study, we develop a 3-D viscoelastic finite element model for the Cascadia subduction zone to study the temporal and spatial variations of interseismic deformation, and we compare the model results primarily with horizontal geodetic deformation observations. The model has an elastic lithosphere/slab and a viscoelastic mantle which has a viscosity of 1019 Pa s as constrained by recent postglacial rebound analyses. For comparison, we adopt a seismogenic zone geometry that was used in the previous elastic dislocation model, and we test the effects of different estimates of relative plate motion on the model predictions. Interseismic deformation is simulated by assigning a backslip rate to the locked zone of the subduction fault, preceded by an earthquake rupture of the same zone. Based on preliminary model results, we draw the following conclusions: (1) The deformation rate decreases through the interseismic period. A seaward motion is predicted for inland sites early in the interseismic period, an effect of postseismic creep of the mantle. (2) Model strain rates 300 years after the earthquake are consistent with the observed values, regardless of the plate motion models used. The horizontal velocities in northern Cascadia decrease landward at a slower rate than predicted by the elastic dislocation model, providing a better fit to observations. (3) Oblique subduction causes strain partitioning. As a result, the direction of local maximum contraction is much less oblique than plate convergence. The northerly direction of the GPS velocities in southern Cascadia represent a northward translation of the forearc. The secular deformation of the forearc may be partially accommodated through earthquake deformation cycles, but it may be better modeled as a process independent of the earthquake cycle.
  • Larry J. Ruff
    2001 年 53 巻 4 号 p. 307-320
    発行日: 2001年
    公開日: 2010/03/26
    ジャーナル フリー
    The deep creep plate interface extends from the down-dip edge of the seismogenic zone down to the base of the overlying lithosphere in subduction zones. Seismogenic/deep creep zone interaction during the earthquake cycle produces spatial and temporal variations in strains within the surrounding elastic material. Strain observations in the Nankai subduction zone show distinct deformation styles in the co-seismic, post-seismic, and inter-seismic phases associated with the 1946 great earthquake. The most widely used kinematic model to match geodetic observations has been a 2-D Savage-type model where a plate interface is placed in an elastic half-space and co-seismic slip occurs in the upper seismogenic portion of the interface, while inter-seismic deformation is modeled by a locked seismogenic zone and a constant slip velocity across the deep creep interface. Here, I use the simplest possible 2-D mechanical model with just two blocks to study the stress interaction between the seismogenic and deep creep zones. The seismogenic zone behaves as a stick-slip interface where co-seismic slip or stress drop constrain the model. A linear constitutive law for the deep creep zone connects the shear stress (σ) to the slip velocity across the plate interface (s′) with the material property of interface viscosity (ζ ) as: σ = ζ s′. The analytic solution for the steady-state two-block model produces simple formulas that connect some spatially-averaged geodetic observations to model quantities. Aside from the basic subduction zone geometry, the key observed parameter is τ, the characteristic time of the rapid post-seismic slip in the deep creep interface. Observations of τ range from about 5 years (Nankai and Alaska) to 15 years (Chile). The simple model uses these values for τ to produce estimates for ζ that range from 8.4 × 1013 Pa/m/s (in Nankai) to 6.5 × 1014 Pa/m/s (in Chile). Then, the model predicts that the shear stress acting on deep creep interface averaged over the earthquake cycle ranges from 0.1 MPa (Nankai) to 1.7 MPa (Chile). These absolute stress values for the deep creep zone are slightly smaller than the great earthquake stress drops. Since the great earthquake recurrence time (Trecur) is much larger than τ for Nankai, Alaska, and Chile, the model predicts that rapid post-seismic creep should re-load the seismogenic zone to about (1/3) of the co-seismic change; geodetically observed values range from about (1/10) to more than (1/2). Also, for the case of (Trecur/τ) >> 1, the model predicts that the slip velocity across the deep creep interface during the inter-seismic phase should be about (2/3) the plate tectonic velocity (R). Thus the deep creep velocity used in Savage-type models should be less than R. Even complex 3-D models with non-linear creep laws should make a similar prediction for inter-seismic deep creep rates. At present, it seems that geodetic observations at Nankai and other subduction zones are more consistent with a deep creep rate of R rather than (2/3)R. This discrepancy is quite puzzling and is difficult to explain in the context of a 2-D steady-state earthquake cycle model. Future observational and modeling studies should examine this apparent discrepancy to gain more understanding of the earthquake cycle in subduction zones.
  • Akira Asada, Tetsuichiro Yabuki
    2001 年 53 巻 4 号 p. 321-326
    発行日: 2001年
    公開日: 2010/03/09
    ジャーナル フリー
    We are developing a synthetic aperture technique using a Sea Beam 2000 multi-beam echo sounder to observe subsea crustal movements for earthquake studies. Augmented by the Kinematic GPS and a motion sensor, the synthetic aperture technique was successfully applied to the Sea Beam 2000 with a 12 kHz frequency acoustic signal. The 4.3-meter long projector produces a transmission fan beam in alongtrack beamwidth of 2 degrees, but a synthesis of the data achieved about 37 m aperture length, equivalent to a 0.3 degrees alongtrack beamwidth. Bathymetry measurements at the water depth of 900 m obtained through the synthetic aperture processing show considerable improvement of the signal-to-noise ratio and reveal detailed features of the seafloor.
feedback
Top