地理学評論 Ser. A
Online ISSN : 2185-1735
Print ISSN : 0016-7444
60 巻 , 4 号
選択された号の論文の5件中1~5を表示しています
  • 田村 均
    1987 年 60 巻 4 号 p. 213-237
    発行日: 1987/04/01
    公開日: 2008/12/25
    ジャーナル フリー
    1931 (昭和6) 年12月,昭和恐慌下の秩父織物業界で,内地向けの絹織物産地としては全国に先がけて工業組合が成立した.本稿は,昭和恐慌期に危機的状況に陥った秩父織物業をとりあげ,この業界が同業組合から工業組合への「劇的」な業界刷新を通じて深刻な恐慌を切り抜け産地の再生をはかっていく過程に着目しながら,工業組合の成立を可能にした社会経済的・地域的条件を明らかにし,その歴史的評価を試みた.
    昭和恐慌下に急きょ成立した工業組合は,生産者である機業家勢力による産地運営と念願の業界刷新を実現させたが,歴史的には国策的な中小織物業の組織化と統制を意味し,地域的には国・県当局の秩父織物業界に対する産地統制を準備するものとなった.この業界では大正期に問題化した同業組合内紛に象徴されるように,早くから生産者の組織化と自治的統制の気運や諸条件が地域的に醸成されてはいたが,工業組合それ自体の成立をめぐっては,商工省や埼玉県当局の強力な政策的誘導と統制がきわめて重要な役割を果たした.そこには中小織物業が地域的に,すなわち産地形態をとって社会経済的に自立発展するにあたって,いわば持殊日本的な特質と限界が見出される.
  • 朴 恵淑
    1987 年 60 巻 4 号 p. 238-250
    発行日: 1987/04/01
    公開日: 2008/12/25
    ジャーナル フリー
    日本と韓国の諸都市における都市人口とヒートアイランド強度との間には正の相関があるが,単なる直線関係ではなく,人口約30万を境にして勾配の異なる直線で表わされる.その原因を推論するため,天空比と非透水性面積比を指標にとり,ヒートアイランド強度ならびに都市人口との関係を考察した。ヒートアイランド強度と天空比とは負の相関,非透水性面積比とは正の相関があり,いずれも高い相関をもつ。天空比と都市人口との関係は欧米の都市と同様な一本の直線で近似できる.しかし,北海道の諸都市の天空比は他の都市に比べてかなり大きく,別の直線で表わされる.非透水性面積比と都市人口との関係は,人口50万程度でその傾向が変わる。これは,ヒートアイランド強度と都市人口とめ関係でみられる人口約30万とは若干差があるが,その傾向は同様である.したがって,都市人口とヒートアイランド強度との関係が中小都市と大都市とで異なる原因の一つとして,非透水性面積比の違いで表わされるような都市構造の差異が関与していると考えられる.
  • 渡邊 真紀子
    1987 年 60 巻 4 号 p. 251-264
    発行日: 1987/04/01
    公開日: 2008/12/25
    ジャーナル フリー
    The author previously made an attempt to clarify the humus characteristics (humus con-tent, composition, etc.) of volcanic ash soils which have developed over the Pleistocene upland from the eastern foot area of Nantai Volcano to the area along the Daiya and Kinu Rivers (Figure 1), and to presume the environment factors of soil formation (Watanabe, 1985). This report deals with the vertical and horizontal changes of the humus characteristics in the soil profiles in the same area as in previous study. The result is summarized as follows.
    1. The vertical distribution of humus characteristics (carbon content, value (brightness) of soil colour and humus composition) was classified into three types, A, B and C (Figure 4). Type C, which may have received soil erosion, is regarded as a modification of type B. Though vertical distribution of humus characteristics in each soil profile reflects the changes of soil forming environment such as vegetation and climate, the main factor which regulates the classification mentioned above is inferred to be the frequency of volcanic ash fall deposit. As regards the samples located relatively far from Nantai Volcano, for example Nos. 13, 14 and 15 (Table 2) which are classified into type B, or type C, the degree of humus accumulation, darkness of the soil colour and degree of humification all tend to increase in the intermediated layers (30 to 50cm under the surface) in the humus profile. This is inferred to have been caused by the change of vegetation related with the thickness and rate of volcanic ash fall deposit.
    2. The humic horizon was divided into three horizons from the viewpoint of soil mor-phology and tephrochronology supported by the 14C determinations (Figure 5). Horizon I is the layer which continues to accept humus supply and humification under soil forming environment in the present. Horizon II corresponds to the surface layer formed under the condition of warm climate, about 3, 000 to 5, 000 years ago. Horizon III is regarded to be the humus layer formed sequently to the decline of volcanic ash fall, about 10, 000 years ago.
    3. The horizontal distribution patterns of humus characteristics such as carbon content, soil colour values (brightness) and the PQ values of humus in each horizon show clear locations (Figure 6). The areas where humus and humic acid accumulation are dominant in horizon II and III tend to move in the direction of west northwest. The changes of these locations mean the environment changes in each horizon. That is, the suitable climate for humus and humic acid accumulation in the period of horizon. II and III were formed, which is inferred to be corresponding to rain factor of each sampling site from 140 to 240, existed in higher location than present.
    4. When the standard deviations of humus characteristics are determined for these three horizons, the values are found to be arranged in the following order: horizon I > horizon II _??_ horizon III. The lower layers have smaller variance and can be regarded as stable horizons.
    In this study, the influence of climate variation was recognized in the investigated area by examining the horizontal distribution of humus characteristics in each horizon. From this viewpoint, it will be possible to presume the past environment of soil formation such as climate variation. In future, it is desirable to investigate the vertical and horizontal changes of humus characteristics in buried humus horizons derived from Holocene tephras.
  • 土居 晴洋
    1987 年 60 巻 4 号 p. 265-277
    発行日: 1987/04/01
    公開日: 2008/12/25
    ジャーナル フリー
    Coleman (1982) devised the “Scape and Fringe Map” method which delineate townscape, farmscape, wildscape, rurban fringe and marginal fringe on the maps of the Second Land Use Survey of Britain. The method, however, can not immediately applied in the analysis of Japanese land-use maps at 1:25, 000. Himiyama (1984, 1985) improved a method of delineating an ‘urban area’ in order to use the Japanese land-use maps. His method is applicable to the digital data and is easily operated with the aid of a computer. The purpose of this paper is to improve Himiyama's method and to show an alternative scape and fringe map classified into five land-use types such as townscape, farmscape, wildscape, rurban fringe and marginal fringe by using the Japanese land-use maps at 1:25, 000. The land-use data used here is the same one as Himiyama (1984, 1985), prepared by the method of systematic point sampling at 1cm interval on each map sheet. Sample field is Hiroshima City (four map-sheets named Gion, Nakafukawa, Hiroshima and Kaita).
    The process consists of the following four steps;
    Step 1. Forming of the basic category; Thirty-three types of land-use are classified into seven basic categories (Urban land use, Transport, Vacant land, Agricultural land, Un-vegetated land, Woodland and water).
    Step 2. The conversioning of an isolated point; If a point is simultaneously surrounded by four points which are classified into the same basic category, this point is newly assigned the basic category similar to surrounding points.
    Step 3. Extractioning of four primary scapes (waterscape, townscape, farmscape and wildscape); Each primary scape is measured by the attribute and the minimum number of a point group. If a point group is fulfilled with above measure, the point group is identified to each primary scape.
    Step 4. The resting point groups which were not identified to primary scapes at Step 3, are decided into fringes or scapes. If the number of group is more than five, it is recog, nized as rurban fringe or marginal fringe, or the rest is recognized as the adjoining scape (except waterscape).
    The Scape and Fringe Map made by the above 4 steps was highly fit for the real land-use pattern of sample field. The accumulation of the maps in various regions enables us to make a comparative study of land use in and around built-up areas of Japanese cities; and to assess the land-use planning better.
  • 1987 年 60 巻 4 号 p. 278-280,283
    発行日: 1987/04/01
    公開日: 2008/12/25
    ジャーナル フリー
feedback
Top