The use of an electric field and ultraviolet enables to control of the charge and motion of particles n in the absence of complicated mechanical and/or pneumatic systems. This article describes a method to charge and levitate the dielectric particles deposited on the insulating plate by an upward electrostatic field and UV irradiation and the effect of photoelectrons emitted from the particles by UV irradiation on the flux and motion of the levitated particles.
Surface-enhanced Raman scattering (SERS) is expected to be applied to ultra-sensitive analysis in a wide range of fields such as the medical field and the biological field. In SERS, it is known that aggregate structure is important to obtain high electromagnetic field. Since the target molecule is selectively adsorbed between primary particles, the SERS effect is expected to be further amplified in the aggregated particles due to the synergistic effect. In this study, we fabricated a nanoparticle multilayer film by aerosol technique, and obtained extremely high SERS effects.
It would be essential to make the manufacturing process as efficient as possible to achieve personalized manufacturing of pharmaceuticals in the future. We have developed a one-pot processing system that integrated powder processing operations in addition to filtration and drying. This table-top equipment was designed to perform the processes of filtration, drying, powder mixing, and wet granulation in a single operation.
Control of properties of porous membrane consisting of carbon-black (CB) and ionomer was investigated, intending the catalyst layer in fuel cell. Slurry in which CB and ionomer were dispersed was coated on the substrate by doctor blading. Porous membrane was manufactured by drying its wetting film. As a result of the measurement of permeability of membrane, it was approximately constant when the specific surface ratio of CB is large, on the contrary, it increased with the membrane thickness when specific surface ratio is small.
In Discrete Element Method (DEM), it is common to reduce the particle stiffness artificially from the original material property to reduce the computational cost. When this method is applied to simulate cohesive particle flows, it is necessary to prevent the excessive energy dissipation caused by the prolonged contact duration, which can make the particles become more cohesive than the original ones. In this article, a new method to scale the viscous damping coefficient according to the reduction of the particle stiffness is proposed to replicate the both static and dynamic flows of the original cohesive particles at the same time.