Online ISSN : 1884-7269
Print ISSN : 0898-5901
ISSN-L : 0898-5901
16 巻 , 4 号
Original Articles
  • Toshio Ohshiro, Takafumi Ohshiro, Katsumi Sasaki, Shunji Fujii, Yuki T ...
    2007 年 16 巻 4 号 p. 189-197
    発行日: 2007年
    公開日: 2010/11/10
    ジャーナル フリー
    The authors have over 30 years experience of treatment with lasers, more than 25 of which have been with low reactive-level laser therapy. (LLLT) Based on our experience, we have continuously attempted to develop new treatments and broaden the clinical application of lasers. Many patients receiving LLLT for an entity other than sight problems have spontaneously described a sense of increased visual acuity following their treatment, and the present study was designed to see if there was in fact, any effect of LLLT on vision. Six healthy adult subjects aged 56∼68 years old, were treated with LLLT according to the proximal priority theory (PPT). The subjects’ close range, far range visual acuity and astigmatism were examined prior to, one hour after and 24 hours after LLLT. The laser hardware used in this experiment was the OhLase HT2001 (Japan Medical Laser Laboratory, Tokyo, Japan) and the Screenoscope (Topcon, Tokyo, Japan). A high rate of improvement was seen for both close range and far range visual acuity but a particularly noteworthy improvement rate of 91.7% was seen at examination for far sightedness immediately after LLLT. LLLT in the field of ophthalmology is promising and further controlled studies carried out by ophthalmologic specialists in larger patient groups may yield new indications for LLLT in this field.
  • Dana Vieru, Martha Cortez, Luis Clayman, Anca Silvia Dumitriu
    2007 年 16 巻 4 号 p. 199-206
    発行日: 2007年
    公開日: 2010/11/10
    ジャーナル フリー
    The general objective of this study was to demonstrate that the application of low level laser therapy (LLLT), in addition to standard procedures employed to treat periodontal disease, improves the outcome of the treatment. Periodontal disease is an infectious process that is the leading cause of tooth loss and attacks the structures of the periodontium (the ligaments around the teeth), the gingivae, epithelial attachment, cementum that cover the root of the tooth, and the alveolar bone that supports the tooth. Diabetes mellitus is a strong risk factor for periodontal disease. Diabetic individuals are three times more likely to have attachment and bone loss than non-diabetic patients. Furthermore, osteoporosis is always associated with alveolar bone loss. Women with osteoporosis have increased alveolar bone retraction, attachment loss, and tooth loss compared with women without osteoporosis. Estrogen deficiency has been linked to decreases in alveolar bone. There is evidence that LLLT has an anti-bacterial effect, acts as anti-inflammatory agent, and stimulates collagen and bone growth. Over the last decade, much progress has been made in elucidating the underlying principles. Approximately half of the diabetic patients and half of the patients with osteoporosis received LLLT in addition to the classical treatment. In this study we searched for the effects of LLLT on advance chronic periodontal diseases that had caused severe destruction of the periodontal structures, i.e., clinical attachment loss over 5 mm. increased bone loss, increased pocket depth (usually 5 mm or grater) and increased tooth mobility. For all four groups [(1) diabetic patients treated with LLLT; (2) diabetic patients without LLLT; (3) osteoporotic patients treated with LLLT; and (4) osteoporotic patients without LLLT) we determined the mean and standard deviations of the following parameters: gingival bleeding time, pain relief time, bone recovery time, inflammation, complete healing. The LLLT-treated groups were superior to the non-treated control groups in both the diabetic and osteoporotic patients General social benefits are the development of a novel LLLT modality for treatment of periodontal disease, which allows for early noninvasive treatment of periodontal infection. LLLT technology promises to become even more cost effective and may reduce the cost of patient care.
  • Yoshimi Asagai, Kengo Yamamoto, Toshio Ohshiro
    2007 年 16 巻 4 号 p. 207-214
    発行日: 2007年
    公開日: 2010/11/10
    ジャーナル フリー
    Congenital dislocation of the hip is a problematic condition to treat, and if not treated, or treated incorrectly, mobility for the affected infant can be severely compromised. This study involved 66 patients with congenital dislocation of the hip (infants within 6 months of birth) treated at our center (mean age upon first examination: 3 months), including 30 patients who underwent low reactive-level laser therapy (LLLT) and 36 who did not. The 30 patients who received LLLT did so in combination treatment with a Pavlik harness or traction therapy for a mean period of 3 months (3 sessions of LLLT irradiation per week). The time course of changes in the acetabular angle, the central edge (CE) angle and the ossific nucleus of the femoral head were compared between patients in the group that received LLLT and those that did not. LLLT combined with conventional treatment for congenital dislocation of the hip resulted in less tension in the soft tissue around the hip joint, more natural reduction of dislocations with the Pavlik harness or traction, and a reduction in the size of interpositions within the hip joint as well as improved centripetalism, thus contributing to prevention of the onset of femoral head necrosis. In addition, LLLT favorably affected the formation of the hip acetabulum as well as growth of the femoral head. This is probably because the improved centripetalism combined with LLLT bioactivation of osteoblasts facilitated acetabular repair, leading to the prevention of coxa magna. When administered to patients with congenital dislocation of the hip, LLLT was pain-free, stress-free and easy to apply. No adverse reactions were recorded in any of the 30 patients in the present study. If LLLT is applied in combination with other means of therapy in the early stages of treatment of congenital dislocation of the hip, it is likely to enable patients to avoid additional corrective surgery (open reduction of dislocations, pelvic osteotomy, femoral neck osteotomy, and so on) as well as prevent the onset of pursuant diseases and conditions, such as femoral head necrosis. LLLT is thus a promising new means of treatment for congenital dislocation of the hip.
Case Report
Newsletter from WFSLMS
Newsletter from JALSMM
Profile of authors and co-authors