Journal of Advanced Mechanical Design, Systems, and Manufacturing
Online ISSN : 1881-3054
ISSN-L : 1881-3054
Volume 9, Issue 2
Displaying 1-10 of 10 articles from this issue
Review Paper
  • Liting ZHAO, Mingjie XI, Wei WANG, Xuan CHU, Xin ZHAO, Ying YUAN
    2015 Volume 9 Issue 2 Pages JAMDSM0013
    Published: 2015
    Released on J-STAGE: April 07, 2015
    JOURNAL FREE ACCESS
    With the increasing consumer demand, the mechanized shrimp productions become more and more popular for its high efficiency and much less bacterial infection. In particular, removal of shell and vein plays an important role to guarantee clean production in the shrimp processing. There are several kinds of machines which can achieve the required function worldwide up to now. Among these machines, the machine featured with a rotary plate has significant advantages if compared with others. Thus the structure and the development process about it were summarized in this paper. Through the summary, the advances of this machine were outlined in detail, and the future research direction of the industry of shrimp peeling machine was also indicated, that is, the mechanical structure need to be optimized and simplified. Meanwhile, if advanced electric automatic control system introduced, the labor occupation would be significantly reduced, and the production quality, productivity and efficiency accordingly be enhanced.
    Download PDF (1559K)
Papers
  • Shuangtao CHEN, Yu HOU, Lu NIU, Shanju YANG, Tianwei LAI
    2015 Volume 9 Issue 2 Pages JAMDSM0014
    Published: 2015
    Released on J-STAGE: April 07, 2015
    JOURNAL FREE ACCESS
    With the excellent damping performance, gas foil bearing (GFB) is becoming the promising hydrodynamic lubrication structure for high speed turbomachinery. To improve the performance of the conventional GFBs, a new double-layer gas foil bearing (PGFB) with double-layer protuberant strip as elastic support is developed. A 2D numerical model based on Reynolds equation and Kirchhoff equation is established to determine the gas film thickness, gas film pressure and foil deflection. Static performance and dynamic performance of three PGFBs with different elastic foil layers arrangement are presented and compared qualitative dues to the difficulties in measuring the practice eccentricity and load capacity with high speed rotor-bearing system. By applying in a turboexpander with ϕ25mm rotor diameter, the three PGFBs are tested. Because the three PGFBs share the same rotor structure and the same air supply pressure, the rotor drag torque and the bearing static load are almost the same in the tests. The experimental results show that all the PGFBs run well in turboexpander. Rotating speed, temperature and enthalpy differences and rotor synchronous vibration under the same turboexpander air supply pressure are compared. The numerical model predicted well the qualitative difference of the loading performance of the three PGFBs.
    Download PDF (2708K)
  • Shinichi ISHIZUKA, Itsuro KAJIWARA
    2015 Volume 9 Issue 2 Pages JAMDSM0015
    Published: 2015
    Released on J-STAGE: April 07, 2015
    JOURNAL FREE ACCESS
    This paper proposes a constitution method for an adaptive PID control system that follows a non-stationary system. Because a PID controller has various practical benefits that are easy to implement, unnecessary of controlled model and highly robust, it is the most common control system in industrial world even today. However, its main drawback is that tuning is time consuming because each parameter is determined empirically based on trial-and-error, which is especially noticeable in a multi-input multi-output (MIMO) system composed of multiple PID controllers with interference between control input and controlled output. Other methods have been proposed, including the Ziegler-Nichols ultimate sensitivity method, but it cannot deal with a MIMO system. Additionally, methods using optimization exist, but they cannot provide online tuning for non-stationary systems during operations due to the numerous tuning parameters and repeated computations. In this study, we introduce a computationally efficient optimization method called the Simultaneous Perturbation Stochastic Approximation (SPSA) and investigate its performances when applied to a PID control system. We also propose an online parameter tuning method for the controller by improving the standard SPSA algorithm. The efficiency of proposed method is demonstrated by applying it to a MIMO system, which has some interference.
    Download PDF (1788K)
  • Kazuki NOMA, Yasuhiro KAKINUMA, Tojiro AOYAMA, Seiji HAMADA
    2015 Volume 9 Issue 2 Pages JAMDSM0016
    Published: 2015
    Released on J-STAGE: April 07, 2015
    JOURNAL FREE ACCESS
    This paper deals with axial ultrasonic vibration-assisted machining with workpiece bending. It was proposed as a novel machining method for the reduction of the chippings at the machined holes during micro through-hole drilling of chemically strengthened glass. In micro through-hole drilling of chemically strengthened glass, machining accuracy and efficiency tend to be low because the material's high hardness and brittleness cause rapid tool wear and large chippings at the inlet and outlet of the machined holes. In order to machine small holes with high accuracy, the reduction of the tensile stress that causes large chippings at the outlet of the machined holes is an issue of primary importance that deserves investigation. In the proposed machining method, the glass plate is bent slightly to be convex upward through the application of a compressive stress at the posterior surface of chemically strengthened glass, with a specially designed jig. Using this proposed method that can reduce the tensile stress, the chipping size at the outlet of the machined holes was successfully reduced with applied compressive stress values of 38.9 MPa. In conclusion, it has been clear that the axial ultrasonic vibration-assisted machining with workpiece bending has the potential for achieving high-precision and high-efficiency machining for chemically strengthened glass.
    Download PDF (1353K)
  • Kuanfang HE, Dongming XIAO
    2015 Volume 9 Issue 2 Pages JAMDSM0017
    Published: 2015
    Released on J-STAGE: April 07, 2015
    JOURNAL FREE ACCESS
    In order to solve the welding formation defects of undercut and hump caused by the irrationality selection of parameters at a high welding speed more than 100cm/min in twin wire tandem co-pool submerged arc welding, a novel hybrid intelligent optimization model for twin wire tandem co-pool high speed submerged arc welding is proposed. This model combines local mean decomposition (LMD), energy entropy, back propagation neural network (BPNN) and particle swarm optimization algorithm (PSO). LMD is employed to decompose the collected welding current signal, excavate the underlying arc feature information related to the rationality of parameters and welding quality of welding seam formation appearance and sectional morphology. The energy entropy is used as the quantificational parameter to describe the rationality of parameters and welding quality. The relationship between the welding parameters and the energy entropy is established by BPNN, and the welding parameters are automatically obtained by the PSO. The application shows that the model is able to reliably achieve the optimization selection of welding parameters to guarantee welding quality.
    Download PDF (2134K)
  • Youshan WANG, Zhibo CUI, Jian WU, Benlong SU, Jianming ZHAO
    2015 Volume 9 Issue 2 Pages JAMDSM0018
    Published: 2015
    Released on J-STAGE: April 28, 2015
    JOURNAL FREE ACCESS
    Tire performances are strongly influenced by cross section profile, and equilibrium profile has been a focus of radial tire researches, however, how to use the profiles to design radial tires has been reported rarely due to reasons of secrecy. This paper describes a practical method of using equilibrium profile to design radial tires, which is based on the restricted dimensions by tire standards. Based on the membrane model and minimum energy principle, equations of equilibrium profiles of radial tires with flat and curved belts are obtained by using variational approach. A method of designing carcass contours by using these equations is developed, in contrast to earlier methods the proposed method makes the width rather than the height of the point with maximum width on the profiles as the input parameter, and the restriction lengths of carcass by the belt are also calculated at the same time. For 175R14 tire, this paper's results are compared with Akasaka's, the accuracy of this method is confirmed and the effects of belt radius on profiles are revealed. Four different designs of 295R22.5 tire are analyzed by finite element method to verify the benefits of this method. This method can be used to design both tires with larger and smaller aspect ratios, and it will offer a strong guide for designing radial tires.
    Download PDF (1471K)
  • Keiichiro FURUYA, Shinichi ISHIZUKA, Itsuro KAJIWARA
    2015 Volume 9 Issue 2 Pages JAMDSM0019
    Published: 2015
    Released on J-STAGE: May 22, 2015
    JOURNAL FREE ACCESS
    This study proposes an online tuning method using a model-based controller with adaptive parameters in the controller to effectively maintain the control performance and stability due to characteristic variations in the structure. Although model-based control generally provides a highly controllable performance, its performance depends on the modeling accuracy of the controlled object. Typically modeling errors, characteristics that change over time, etc. cause the performance to deteriorate. Hence, tuning of the model-based controller's characteristics is proposed as a method to adapt to the errors between a real object and its model. The main idea of the tuning method proposed in this study is that tuning the poles of the controller greatly affects control performance and stability. The tuning algorithm in the proposed method employs the simultaneous perturbation stochastic approximation (SPSA), which is well suited for optimization problems with multiple design variables. To evaluate the effectiveness of the proposed tuning method, it is applied to vibration control simulations in which the model of the controlled object is perturbed to change its physical characteristics, and then the controller is tuned to adapt to these changes. Since SPSA is a stochastic optimization method, Monte Carlo simulations are also conducted to demonstrate the effectiveness of the proposed tuning method.
    Download PDF (1056K)
  • Ren-Chung SOONG
    2015 Volume 9 Issue 2 Pages JAMDSM0020
    Published: 2015
    Released on J-STAGE: May 27, 2015
    JOURNAL FREE ACCESS
    A new cam-geared mechanism, consisting of a cam-follower and elementary planetary gear train is proposed for exact path generation. The formation and mobility of the proposed mechanism are illustrated in detail, in addition to inverse kinematic analysis of the design and the design procedure. The advantages of the new design include its simple, compact structure, simple design procedure and no numbers limitation of precision point. This new mechanism is suitable for generating diverse continuous curve paths and symmetric curve paths with an intersection. Examples are provided to show the feasibility and effectiveness of this proposed method.
    Download PDF (1834K)
  • Yih-Fong TZENG, Fu-Chen CHEN, Chih-Huang CHEN
    2015 Volume 9 Issue 2 Pages JAMDSM0021
    Published: 2015
    Released on J-STAGE: June 16, 2015
    JOURNAL FREE ACCESS
    A hybrid approach for multiple performance characteristics optimization of ball grid array (BGA) gold (Au) wire bonding process is proposed. 8 main process factors of BGA wire bonding technology are selected as the control factors; such as factor A (Seating USG), factor B (TIP Height), factor C (C/V), factor D (USG Current), factor E (USG Bond Time), factor F (Bond Force), factor G (FS Threshold), and factor H (FAB Size). The performance characteristics of the process in the study including wire pull strength, ball shear strength, ball thickness difference, ball size difference, and percentage of the Au-Al intermetallic compound (IMC) are measured. The hybrid approach is to firstly use the Taguchi orthogonal array to carry out experiments for calculating the S/N ratios of the selected performance characteristics. The principal component analysis is then applied to determine the principal components of the S/N ratios, which are transformed via fuzzy logic reasoning into an integrated multiple performance index (MPI) for further analysis of the effect of each control factors on the bonding process. Through the analysis of process factors and analysis of variance (ANOVA) on the MPI, the best process design is determined as A1 (Seating USG = 80mA), B3 (TIP Height = 6mils), C1 (C/V = 0.7mils/ms), D3 (USG Current = 95mA), E3 (USG Bond Time = 25ms), F1 (Bond Force = 16grams), G1 (FS Threshold = 10grams), and H3 (FAB Size = 1.65mils). Experimental results show that the best process design indeed helps improve multiple performance characteristics. Compared with the initial process design, the best design is able to improve the wire pull strength by 0.014db, the wire shear strength by 1.569db, the ball size by 9.326db, and the IMC by 1.088db.
    Download PDF (2650K)
  • Yonghong CHEN, Yan CHEN, Wenjun LUO, Guanghui ZHANG
    2015 Volume 9 Issue 2 Pages JAMDSM0022
    Published: 2015
    Released on J-STAGE: June 25, 2015
    JOURNAL FREE ACCESS
    The toroidal involute worm (TI worm) drive is composed of an involute gear and an hourglass worm generated by the involute gear surface, and it is of great advantages for power transmission. Because of the difficulty of grinding TI worm tooth surface, the TI worm drive has rarely been used. To solve this problem, an accurately turning method through the hourglass helix for the TI worm tooth surface is proposed. For this accurately turning method, mathematical models are developed, basic equations are derived and turning accuracy is analyzed. A nylon TI worm is turned and the red test of TI worm drive is checked. It is made clear that the proposed accurately turning method is correct and practicable. The study is expected to provide the theoretical and experimental foundation for the future explore the accurately hard turning of TI worm tooth surface.
    Download PDF (1672K)
feedback
Top