Journal of Computer Chemistry, Japan
Online ISSN : 1347-3824
Print ISSN : 1347-1767
14 巻 , 2 号
  • Keita Abe, Hiroshi Sakiyama, Yuzo Nishida
    2015 年 14 巻 2 号 p. 23-29
    発行日: 2015年
    公開日: 2015/07/03
    [早期公開] 公開日: 2015/05/26
    ジャーナル フリー HTML
    Some iron(III) complexes, including [Fe2(μ-O)(nta)2(H2O)2]2– (1), [Fe2(μ-O)(edda)2(H2O)2] (2), and [Fe2(μ-O)(ida)2(H2O)4] (3), are considered to be carcinogens causing renal injuries according to the results of previous animal experiments, where nitrilotriacetate [(nta)3–], ethylenediamine-N,N'-diacetate [(edda)2–], and iminodiacetate [(ida)2–] are the chelating ligands (chelators). On the other hand, a similar iron(III) complex [Fe2(μ-O)(pac)2(H2O)2] (4) is not considered to be a carcinogen, where N-(2-pyridylmethyl) iminodiacetate [(pac)2–] is the chelating ligand. In order to clarify the differences in carcinogenicity, the structures of complexes 14 were investigated based on the density functional theory (DFT) method, because the structures of complexes had not been clarified in solution. As a result, two-point interaction with hydrogen peroxide or α-helix was found to be possible for carcinogenic iron(III) complexes 1 and 3, whereas the interaction was found to be impossible for non-carcinogenic iron(III) complex 4.
  • 石川 諒, 丸尾 容子, 小林 啓二, 寺前 裕之
    2015 年 14 巻 2 号 p. 30-35
    発行日: 2015年
    公開日: 2015/07/03
    [早期公開] 公開日: 2015/06/14
    ジャーナル フリー HTML
    ルチジン誘導体生成の反応機構を解明するために, B3LYP/6-31G**レベルおよび一部はMP2/6-31G**レベルで3, 5-diacetyl-1,4-dihydro-2,6-dimethylpyridine, 3,5-dibenzoyl-1,4-dihydro-2,6-dimethylpyridineおよび3,5-dibenzoyl-1,4-dihydro-2,6-diphenyl-pyridineの各ルチジン誘導体の対応するβ-ジケトンからの生成反応の反応機構をab initio分子軌道法を用いて試みた.全ての素反応について安定構造と遷移状態の構造を求めた.反応中間体であるFLUORAL-P生成の素反応について,水分子を1個加えることによりPCM MP2/6-31G**レベルでの活性化障壁が47.15 kcal/molから25.35 kcal/molへ減少することがわかった.
  • Taku Onishi
    2015 年 14 巻 2 号 p. 36-42
    発行日: 2015年
    公開日: 2015/07/03
    [早期公開] 公開日: 2015/06/19
    ジャーナル フリー HTML
    After the accident of Fukushima's nuclear power plant, soil contamination was caused by radioactive cesium. In this study, the new cesium-adsorbent: Cs1-xNaxMnII(CN)3 Prussian blue analogue was theoretically designed to solve the problem. In Prussian blue (iron cyano-compound), both water defect and iron vacancy are closely related to cesium-adsorption. On the other hand, in Cs1-xNaxMnII(CN)3, the cesium-adsorption mechanism is completely different. Hybrid Kohn-Sham DFT calculations were performed to investigate the cesium-adsorption mechanism. It was concluded that more stable and efficient cesium-adsorption can be realized by the ion exchange between counter cations (between sodium and cesium ions), under applied voltage.