低温工学
Online ISSN : 1880-0408
Print ISSN : 0389-2441
ISSN-L : 0389-2441
12 巻, 2 号
選択された号の論文の5件中1~5を表示しています
  • 牧 直樹, 高橋 典義, 佐藤 新太郎, 古山 昌之
    1977 年 12 巻 2 号 p. 41-50
    発行日: 1977/04/25
    公開日: 2010/02/26
    ジャーナル フリー
    A superconducting synchronous generator consists of superconducting field winding, nonmagnetic multi-tubular rotor and airgap armature winding. The superconducting generator has the benefits of 1/2-2/3 weight reduction and 0.5-0.8% efficiency improvement compared with the conventional generator, and the economic crossover between them appears to be 0.5-1.5 GVA.
    The problems discussed are (1) property, cooling and support of superconducting field winding, (2) thermal contraction of cryogenic torque tube, (3) tubular damper configuration, (4) seal of helium transfer coupling, (5) transposition, cooling and support of airgap armature winding, (6) vibration of the rotor.
  • 和気 正芳, 小林 嶺夫, Bernard TURCK
    1977 年 12 巻 2 号 p. 51-58
    発行日: 1977/04/25
    公開日: 2010/02/26
    ジャーナル フリー
    The electric field on the outermost shell of superconducting filaments depends directly on the current distribution inside a composite. Calculations are carried out taking into account the axial diffusion due to the resistivity of the matrix. Moreover, the critical state model is modified to account for the dependence of the local current density on the electric field. It is shown that a simple self field measurement is a very good way to evaluate the average transverse resistivity in a multifilament composite. Our samples made of very fine filaments show a resistivity in the range of a few 10-9Ω. m, i.e. much higher resistivity than that of the copper matrix itself. That resistivity decreases as the filament diameter increases. This fact shows that there exists a high resistive barrier at the interface between the superconductor and the copper.
  • 小笠原 武, 安河内 昂, 佐山 栄俊
    1977 年 12 巻 2 号 p. 59-64
    発行日: 1977/04/25
    公開日: 2010/02/26
    ジャーナル フリー
    The distribution of the transport current in a twisted multifilamentary composite has been studied experimentally and theoretically by observing the terminal voltage during a sweep of the current for a sample configuration which simulates the windings of superconducting magnets. The theoretical analysis shows that the voltage versus transport current characteristics are directly related to the current distribution inside the composite conductor, and expressions of the voltage are derived for the highly non-uniform current distribution to be expected from the effect of the self-field. The observed voltage agrees well with the theoretical prediction up to a current level of about 60% of the critical current. At higher values an excess resistive voltage develops progressively. The influence of this addistional resistive state on the current distribution and on the self-field instability in discussed briefly.
  • 西嶋 茂宏, 岡田 東一
    1977 年 12 巻 2 号 p. 65-69
    発行日: 1977/04/25
    公開日: 2010/02/26
    ジャーナル フリー
    An organic potting material, Epoxy Resin, was exposed to γ-rays at the liquid nitrogen temperature 77K and its mechanical properties such as elastic modulus, breaking stress, and breaking strain, were measured at the same temperature.
    The gamma-irradiation exceeding 107R led to small reduction of elastic modulus, which was concluded due to the cleavage of principal chain of polymer. The frequency distribution of the measured values concerning structure-sensitive properties such as breaking stress and/or breaking strain was found not to fit the Gaussian curve after irradiation. This distribution had a tail component in the lower region, which suggested an introduction of “local” weak spots in potting material of the superconducting magnets during operation under irradiation.
  • 安河内 昂, 安藤 俊就
    1977 年 12 巻 2 号 p. 70-72
    発行日: 1977/04/25
    公開日: 2010/02/26
    ジャーナル フリー
    A small superconductin magnet was woung by fine-multi superconducting wire and operated in a temperature range of 1.5K-9.5K. The critical current of the magnet was a good agreement with the results of short wire. The magnet generated 103KG at 1.5K.
feedback
Top