低温工学
Online ISSN : 1880-0408
Print ISSN : 0389-2441
ISSN-L : 0389-2441
33 巻, 11 号
選択された号の論文の5件中1~5を表示しています
  • 佐藤 明男
    1998 年 33 巻 11 号 p. 705
    発行日: 1998/11/25
    公開日: 2010/02/26
    ジャーナル フリー
  • 君嶋 義英
    1998 年 33 巻 11 号 p. 706-709
    発行日: 1998/11/25
    公開日: 2010/02/26
    ジャーナル フリー
  • 高強度ポリエチレン繊維/ガラス繊維系混合強化複合材料からなるパイプの引張り及び熱歪特性
    山中 淳彦, 鹿島 俊弘, 西嶋 茂宏, 岡田 東一
    1998 年 33 巻 11 号 p. 710-715
    発行日: 1998/11/25
    公開日: 2010/02/26
    ジャーナル フリー
    Hybrid composite pipes reinforced with high-strength polyethylene fiber (DF) and glass fiber (GF) were prepared to develop the coil bobbin for stable superconducting coils. The bobbin that in which the circumferential thermal strain expands with cooling and in which the circumferential Young's modulus is large would be effective for stable coils. The unidirectional DGFRP showed negative thermal expansion coefficient, and its Young's modulus was similar to DFRP in fiber direction; Young's modulus perpendicular to fiber direction was larger than that of DFRP. The circumferential Young's modulus of DGFRP pipe did not decrease with the filament winding (FW) angle to compare with DFRP. The calculated thermal strain with a cooling of the pipe showed good agreement with the average of observed inner and outer thermal strains. The circumferential thermal strain showed an expansion with FW angle of 50-90 deg and the absolute value was smaller than that of DFRP. The inner and outer circumferential thermal strains were different. The difference decreased with increasing inner diameter/thickness, and the differences were smaller than those of DFRP. The experimental data were obtained to make it possible to devise a coil bobbin with negative thermal expansion coefficient by DGFRP.
  • 杉本 誠, 高野 克敏, 辻 博史, 阿部 和彦, 長山 俊毅, 奥 隆司
    1998 年 33 巻 11 号 p. 716-723
    発行日: 1998/11/25
    公開日: 2010/02/26
    ジャーナル フリー
    Alumina ceramics (Al2O3) is well known as an excellent material for insulation equipment, such as insulation breaks and feed-through terminals, at room temperature. A mechanical test of the ceramics was carried out for the application of an insulation break at low temperature. The insulation break consisted of the ceramics and the transition metal with a joint between them. The brazing was applied to the joint and its mechanical strength was measured. A mechanical test of the ceramics itself was also carried out. The testing temperatures were 4.2K, 77K and room temperature. The tensile strength of the alumina was slightly increased at the liquid helium temperature comparison with room temperature. The maximum of the tensile strength on the brazing joint was achieved as 270MPa at 4.2K testing, which consists of copper and alumina of 95% purity. The stress distribution at the joint was evaluated by the finite element analysis to discuss the tensile strength of the brazing joint. A trial fabrication of the insulation break was carried out by using alumina. The results of the trial showed that the insulation break made from alumina had sufficient enough mechanical and electric properties for a low temperature application.
  • 高臨界電流密度 (Nb, Ti)3Sn導体
    宮崎 隆好, 村上 幸伸, 長谷 隆司, 宮武 孝之, 嶋田 雅生, 川手 剛雄, 木吉 司, 伊藤 喜久男, 和田 仁
    1998 年 33 巻 11 号 p. 724-732
    発行日: 1998/11/25
    公開日: 2010/02/26
    ジャーナル フリー
    A (Nb, Ti)3Sn superconductor with high critical current density (Jc) for a 1GHz NMR magnet has been developed on the base of a so-called bronze process by using a matrix of Cu-15 wt% Sn-0.3 wt% Ti. To investigate the effects of increase in tin content on Jc and n value, another conductor with a conventional matrix of Cu-13 wt% Sn-0.3 wt% Ti was fabricated for comparison. The developed conductor showed a distinct increase in Jc in comparison with the conventional one. Based on microscopic investigations, the obtained improvement in Jc was attributed to an increase in reacted layer thickness and a decrease in grain size. The dependence of high field Jc on heat treatment conditions was also examined in relation to flux pinning. It then turned out that the Jc of the developed (Nb, Ti)3Sn conductor in high fields of over 20T depends on the upper critical field rather than on the microstructures of (Nb, Ti)3Sn. The developed conductor showed a Jc of 102A/mm2 and n values of about 40 at 1.8K and 21T, fulfilling all target values in the preliminary design of a 1GHz NMR magnet.
feedback
Top