The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Volume 54, Issue 4
Displaying 1-7 of 7 articles from this issue
Full Papers
  • Shigeto Otsuka, Yuuichi Abe, Rie Fukui, Masaya Nishiyama, Keishi Sendo ...
    2008 Volume 54 Issue 4 Pages 187-193
    Published: 2008
    Released on J-STAGE: September 18, 2008
    JOURNAL FREE ACCESS
    We determined the bacterial community profile in non-axenic cultures of Chlorella (Chlorophyceae, Chlorophyta) isolated from soil. The bacterial composition at the phylum level was different from that of whole soil bacteria, but it was similar to that reported for non-axenic cultures of marine microalgae such as diatoms (Bacillariophyceae, Heterokontophyta). Expected novel bacteria, i.e. those which do not have close relatives among described species, were maintained in the cultures, and these bacteria were chiefly composed of members of the phylum Bacteroidetes. They may have been ‘as-yet-uncultured’ but in practice unintentionally been cultured in microalgal cultures. They could serve as good bioresources in various fields of biological and ecological studies.
    Download PDF (93K)
  • Valérie Decraene, Derren Ready, Jonathan Pratten, Michael Wilso ...
    2008 Volume 54 Issue 4 Pages 195-203
    Published: 2008
    Released on J-STAGE: September 18, 2008
    JOURNAL FREE ACCESS
    Little is known about the number, type, or antibiotic resistance profiles, of air-borne microbes present in hospital settings yet such information is important in designing effective measures to reduce cross-infection. In this study settle plates were used to identify and quantify the air-borne microbes present in a dental clinic. All isolates were identified to species level using partial 16S ribosomal RNA gene sequencing and their susceptibility to ampicillin, chloramphenicol, erythromycin, gentamicin, penicillin, tetracycline or vancomycin was performed. The mean numbers of viable bacteria detected for each sampling occasion during periods of clinical activity and in the absence of such activity were 21.9×102 cfu/m2/h and 2.3×102 cfu/m2/h respectively. One hundred ninety-three distinct colony morphotypes, comprising 73 species, were isolated during the study and 48% of these were resistant to at least one antibiotic. The mean numbers of different morphotypes detected per sampling occasion were 14.3 and 5 during periods of clinical activity and inactivity respectively. Propionibacterium acnes, Micrococcus luteus and Staphylococcus epidermidis were frequently isolated regardless of whether any clinical activities were taking place. These findings highlight the importance of preventing surfaces from becoming reservoirs of antibiotic-resistant bacteria and thereby contributing to cross-infection in the dental clinic.
    Download PDF (90K)
  • Jacek Kozdrój
    2008 Volume 54 Issue 4 Pages 205-210
    Published: 2008
    Released on J-STAGE: September 18, 2008
    JOURNAL FREE ACCESS
    Two species of Pseudomonas (i.e. P. chlororaphis or P. putida) derived from a maize rhizosphere were studied for their impact on the structure of the microbial community in the rhizosphere of young maize seedlings after inoculation. The culturable bacteria and total microbial communities were analyzed based on profiles of whole-cell fatty acid methyl esters (MIDI-FAME). The introduction of Pseudomonas species resulted in the shift from the Gram-positive dominated culturable community in the rhizosphere of uninoculated maize to more Gram-negative populations in the rhizospheres of the inoculated plants. For the total rhizosphere communities, 43, 47 and 42 FAMEs were detected in the uninoculated maize and the samples inoculated with P. chlororaphis or P. putida, respectively. In contrast to the culturable communities, low concentrations of marker FAMEs for Gram-positives (i15:0, a15:0, i16:0) were found in the profiles of the total rhizosphere communities. The maize inoculations resulted in an enrichment of some Gram-negative isolates; however, Gram-positive bacteria, Cytophaga/Flavobacterium and saprophytic fungi were found in the uninoculated rhizosphere.
    Download PDF (271K)
  • Taweesak Malimas, Pattaraporn Yukphan, Mai Takahashi, Yuki Muramatsu, ...
    2008 Volume 54 Issue 4 Pages 211-220
    Published: 2008
    Released on J-STAGE: September 18, 2008
    JOURNAL FREE ACCESS
    Strain NBRC 12467T was examined genetically, phylogenetically, phenotypically, and chemotaxonomically. The DNA G+C content of the strain was 59.5 mol%. The strain represented low levels of DNA-DNA hybridization of 49–9% to the type strains of eight Gluconobacter species. The strain formed a cluster along with the type strains of G. albidus and G. kondonii in phylogenetic trees based on 16S rRNA gene sequences. In a phylogenetic tree based on 16S–23S rRNA gene ITS sequences, however, the strain formed an independent cluster from the type strains of the eight Gluconobacter species. Such phylogenetic relationships were supported by the calculated pair-wise 16S rRNA gene and 16S–23S rRNA gene ITS sequence similarities. The strain was distinguished from the type strains of the eight Gluconobacter species by 16S–23S rRNA gene ITS restriction analysis using five restriction endonucleases. The strain produced a water-soluble brown pigment and 2,5-diketo-D-gluconate from D-glucose, differing from the type strains of the eight Gluconobacter species, and acid from meso-erythritol very weakly, differing from the type strains of the remaining seven Gluconobacter species except for the type strain of G. roseus, but not from maltose, differing from the type strain of G. oxydans, and had Q-10. For the strain, which was once classified as G. oxydans subsp. sphaericus, Gluconobacter sphaericus (Ameyama 1975) comb. nov. is proposed. The type strain is NBRC 12467T, which is also deposited as BCC 14448T.
    Download PDF (461K)
  • Sandrine Graff, Jean-Claude Chaumeil, Pierre Boy, René Lai-Kuen ...
    2008 Volume 54 Issue 4 Pages 221-227
    Published: 2008
    Released on J-STAGE: September 18, 2008
    JOURNAL FREE ACCESS
    Saccharomyces boulardii is a probiotic with proven health benefits. However its survival is challenged by gastrointestinal transit, and a ratio between 1 and 3% of living yeast is recovered in the feces after oral administration. The aim of the study was to determine to what extent the yeast was sensitive to gastrointestinal pH conditions. Therefore we explored the survival of different concentrations of S. boulardii in conditions mimicking the stomach pH (pH 1.1 0.1 N HCl) and the intestinal pH (pH 6.8 phosphate buffer) in vitro. The probiotic being commercialized as a freeze-dried powder obtained from an aqueous suspension, both forms were evaluated. In phosphate buffer pH 6.8, the viability remained stable for both forms of S. boulardii for 6 h. In HCl pH 1.1, viability of both forms (200 mg L-1) significantly decreased from 5 min. Observation under scanning/transmission electron microscopy showed morphological damages and rupture of the yeast wall. Threshold value from which S. boulardii viability was unaltered was pH 4. At the highest concentration of 200 g L-1, the initial pH value of 1.1 rose to 3.2, exerting a protective effect. In conclusion, although the yeast in aqueous suspension was less sensitive than the freeze-dried yeast to acidic conditions, a gastric protection for improvement of oral bioavailability of viable S. boulardii appears necessary.
    Download PDF (542K)
Short Communications
feedback
Top