The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
Search
OR
Browse
Search
Volume 61 , Issue 6
Showing 1-9 articles out of 9 articles from the selected issue
    • |<
    • <
    • 1
    • >
    • >|
Full Papers
  • Karl J. Indest, Jed O. Eberly, Dawn E. Hancock
    Volume 61 (2015) Issue 6 Pages 217-223
    Released: January 19, 2016
    JOURNALS FREE ACCESS
    Nitro group-containing natural products are rare in nature. There are few examples of N-oxygenases, enzymes that incorporate atmospheric oxygen into primary and secondary amines, characterized in the literature. N-oxygenases have yet to be characterized from the Corynebacterineae, a metabolically diverse group of organisms that includes the genera Rhodococcus, Gordonia, and Mycobacterium. A preliminary in silico search for N-oxygenase AurF gene orthologs revealed multiple protein candidates present in the genome of the Actinomycete Rhodococcus jostii RHAI (RHAI_ro06104). Towards the goal of identifying novel biocatalysts with potential utility for the biosynthesis of nitroaromatics, AurF ortholog RHAI_ro6104 was cloned, expressed and purified in E. coli and amine and nitro containing phenol substrates tested for activity. RHAI-ro06104 showed the highest activity with 4-aminophenol, producing a Vmax of 18.76 μM s–1 and a Km of 15.29 mM and demonstrated significant activities with 2-aminophenol and 2-amino-5-methylphenol, producing a Vmax of 12.86 and 12.72 μM s–1 with a Km of 8.34 and 2.81 mM, respectively. These findings are consistent with a substrate range observed in other N-oxygenases, which seem to accommodate substrates that lack halogenated substitutions and side groups directly flanking the amine group. Attempts to identify modulators of RHAI-ro06104 gene activity demonstrated that aromatic amino acids inhibit expression by almost 50%.
    View full abstract
    Download PDF (355K)
  • Juan Chen, Junni Tang, Arun K. Bhunia, Cheng Tang, Changting Wang, Hui ...
    Volume 61 (2015) Issue 6 Pages 224-231
    Released: January 19, 2016
    JOURNALS FREE ACCESS
    The objective of the present study was to formulate a multi-pathogen enrichment broth which could support the simultaneous growth of five common foodborne pathogens (Salmonella enterica, Staphylococcus aureus, Shigella flexneri, Listeria monocytogenes and Escherichia coli O157:H7). The formulated broth SSSLE was composed of potassium tellurite, bile salt, lithium chloride, and sodium chloride as growth-inhibitors; glucose, esculin, mannitol and sodium pyruvate as growth-promoters. Compared with the respective specific selective enrichment broths, the individual growth pattern of each target pathogen in SSSLE was equal, or even better, except in the case of S. flexneri. In mixed-culture experiments, the gram-negative bacteria showed higher growth capabilities than the gram-positive bacteria after 8-h enrichment; however, the cell numbers after 24-h enrichment indicated that SSSLE could support the concurrent growth of five target pathogens irrespective of whether pathogens were inoculated initially at equal or unequal levels. For natural food samples under the high background flora, the final cell numbers enriched in SSSLE for five targets were enough to be detected by multiplex PCR. In conclusion, SSSLE was capable of supporting the growth of five target pathogens concurrently. The new broth formulated in this study has the potential of saving time, efforts and costs in multi-pathogen enrichment procedures.
    View full abstract
    Download PDF (203K)
  • Siriporn Chaikaew, Sorawit Powtongsook, Somphop Boonpayung, Soottawat ...
    Volume 61 (2015) Issue 6 Pages 232-240
    Released: January 19, 2016
    JOURNALS FREE ACCESS
    The production of histamine dehydrogenase (HADH) by Natrinema gari BCC 24369, a halophilic archeaon isolated from fish sauce, was optimized and scaled up under a non-sterile condition. Through statistical design by Plackett-Burman design (PBD), casamino acid, NaCl, MgSO4·7H2O and FeCl2·4H2O were identified as the significant medium compositions influencing HADH production. Central composite design (CCD) was employed to identify the optimal values of individual composition yielding the maximum HADH production. The analysis indicated that the optimal medium was composed of 15 g/l casamino acid, 75 g/l MgSO4·7H2O, 273 g/l NaCl, 2.5 mg/l FeCl2·4H2O, 10 g/l yeast extract, 5 g/l sodium glutamate and 5 g/l KCl. Based on the one-factor-at-a-time (OFAT) method, the optimum initial pH of the culture medium and the incubation temperature for HADH production were 7.5 and 37°C, respectively. The production of HADH under optimal conditions was 2.2-fold higher than that under un-optimized conditions. Owing to the halophilic nature of Nnm. gari BCC 24369, a more economical and eco-friendlier HADH production was developed under a completely non-sterile condition. In a 16-l batch cultivation of Nnm. gari BCC 24369, HADH productivity under a non-sterile condition (858 ± 12 U/g cell biomass) was comparable to that under a sterile condition (878 ± 15 U/g cell biomass). These results demonstrate the feasibility and simplicity of HADH production using Nnm. gari BCC 24369 under a non-sterile condition without compromising enzyme yield and any changes in Km value.
    View full abstract
    Download PDF (2229K)
  • Palaniyandi Velusamy, Raman Pachaiappan, Meera Christopher, Baskaralin ...
    Volume 61 (2015) Issue 6 Pages 241-247
    Released: January 19, 2016
    JOURNALS FREE ACCESS
    A newly isolated strain, CWD-67, which exhibited high fibrinolytic activity, was screened from dumping soils enriched with poultry wastes. The strain was identified as Bacillus tequilensis (KF897935) by 16Sr RNA gene sequence analysis and biochemical characterization. A fibrinolytic enzyme was purified to homogeneity from the culture supernatant using ammonium sulfate precipitation, membrane concentration, dialysis, ion-exchange, and gel filtration chromatography. SDS-PAGE analysis showed that the purified enzyme was a monomeric protein with an apparent molecular weight of 22 kDa, which is the lowest among Bacillus fibrinolytic enzymes reported to date. The purified enzyme was confirmed to have fibrinolytic activity by a fibrin zymogram. The optimal pH and temperature values of the enzyme were 8.0 and 45°C, respectively. The enzyme was completely inhibited by PMSF and significantly inhibited by EDTA, TPCK, Co2+, Zn2+, and Cu2+, suggesting a chymotrypsin-like serine metalloprotease. In vitro assays revealed that the purified enzyme could catalyze fibrin lysis effectively, indicating that this enzyme could be a useful fibrinolytic agent.
    View full abstract
    Download PDF (2492K)
  • Seiji Wakao, Lowela Siarot, Toshihiro Aono, Hiroshi Oyaizu
    Volume 61 (2015) Issue 6 Pages 248-254
    Released: January 19, 2016
    JOURNALS FREE ACCESS
    The lipopolysaccharide (LPS) of Azorhizobium caulinodans ORS571, which forms N2-fixing nodules on the stems and roots of Sesbania rostrata, is known to be a positive signal required for the progression of nodule formation. In this study, four A. caulinodans mutants producing a variety of defective LPSs were compared. The LPSs of the mutants having Tn5 insertion in the rfaF, rfaD, and rfaE genes were more truncated than the modified LPSs of the oac2 mutants. However, the nodule formation by the rfaF, rfaD, and rfaE mutants was more advanced than that of the oac2 mutant, suggesting that invasion ability depends on the LPS structure. Our hypothesis is that not only the wild-type LPSs but also the altered LPSs of the oac2 mutant may be recognized as signal molecules by plants. The altered LPSs may act as negative signals that halt the symbiotic process, whereas the wild-type LPSs may prevent the halt of the symbiotic process. The more truncated LPSs of the rfaF, rfaD, and rfaE mutants perhaps no longer function as negative signals inducing discontinuation of the symbiotic process, and thus these strains form more advanced nodules than ORS571-oac2.
    View full abstract
    Download PDF (6308K)
  • Hayuki Sugimoto, Keita Nakamura, Yuji Nishino, Yuta Idezawa, Akiko Fuj ...
    Volume 61 (2015) Issue 6 Pages 255-261
    Released: January 19, 2016
    JOURNALS FREE ACCESS
    Chitinase B from Serratia marcescens 2170 is one of the processive chitinases, and it has a linear path of aromatic amino acid residues on the surface and in the catalytic cleft. There are four surface-exposed residues lined-up towards the cleft, Y481, W479, W252, and Y240. The substitution of these residues with alanine causes a decrease in both the extent of the substrate binding and the hydrolytic activity (Katouno et al., 2004). Here, we examine the three mutants without losing the substrate-binding ability, Y240W, Y481W, and Y240W/Y481W. These mutants were prepared for a detailed analysis of the functions of Y240 and Y481, which showed a lower contribution to substrate binding than W479 and W252. The parameters for the binding of the three mutants to crystalline β-chitin were similar to those for the wild type. The hydrolytic activity of Y240W and Y240W/Y481W against crystalline β-chitin was significantly decreased. However, the hydrolytic activity of Y481W was similar to that of the wild type, indicating some differences in the roles of Y240 and Y481 during the processive degradation of crystalline β-chitin. Taken together with the previous results, it was suggested that while Y240 and Y481 were required for the substrate binding, Y240 had additional roles in the processive degradation of crystalline β-chitin, possibly in guiding a chitin chain into the catalytic cleft.
    View full abstract
    Download PDF (1727K)
  • Sawako Takahashi, Hiromi Nishida
    Volume 61 (2015) Issue 6 Pages 262-265
    Released: January 19, 2016
    JOURNALS FREE ACCESS
    We generated spheroplasts from Escherichia coli carrying a broad-host-range plasmid. In the presence of penicillin, the spheroplasts did not divide but grew and enlarged in marine broth, whereas, in the absence of penicillin, they elongated. We quantified cellular DNA at different time points by using real-time quantitative PCR. Both chromosomal and plasmid DNA had replicated during spheroplast growth not only in the absence but also in the presence of penicillin. Thus, plasmid DNA and chromosomal DNA replication might be regulated synchronously during the growth of spheroplasts.
    View full abstract
    Download PDF (1963K)
Short Communications
    • |<
    • <
    • 1
    • >
    • >|
feedback
Top