The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Volume 66, Issue 1
Displaying 1-7 of 7 articles from this issue
Full Papers
  • Mia Fitria Utami, Yoshihiko Matsuda, Ayako Takada, Noritaka Iwai, Taka ...
    Article type: research-article
    2020 Volume 66 Issue 1 Pages 1-7
    Published: 2020
    Released on J-STAGE: April 13, 2020
    Advance online publication: June 20, 2019
    JOURNAL FREE ACCESS
    Supplementary material

    We previously reported the extracellular production of antibody fragment Fab by Corynebacterium glutamicum. In the course of searching for genes which improve the secretion efficiency of Fab, we coincidentally found that the final growth increased significantly when the NCgl2986 gene encoding an amidase-like protein was overexpressed. This effect was observed when cells were grown on the production medium MMTG, which contains high concentrations of glucose and neutralizing agent CaCO3, but not on MMTG without CaCO3 or Lennox medium. Not only turbidity but also dry cell weight was increased by NCgl2986 overexpression, although the growth rate was not affected. It was recently reported that the Mycobacterium tuberculosis homolog Rv3915 functions as an activator of MurA protein, which catalyzes the initial step of peptidoglycan synthesis. Growth promotion was also observed when the MurA protein was overproduced. His-tagged NCgl2986 protein was purified, but its peptidoglycan hydrolyzing activity could not be detected. These results suggest that NCgl2986 promotes cell growth by activating the peptidoglycan synthetic pathway.

    Download PDF (594K)
  • Nur'Aqilah Farhanah Mohd Mohsi, Atiqqoh Apandi, Megat Johari Megat Moh ...
    Article type: research-article
    2020 Volume 66 Issue 1 Pages 8-14
    Published: 2020
    Released on J-STAGE: April 13, 2020
    Advance online publication: July 08, 2019
    JOURNAL FREE ACCESS
    Supplementary material

    Prazosin (PRZ), a drug used to treat hypertensive patients, is an emergent contaminant in water systems. PRZ is an alpha-adrenergic receptor blocker used to treat anxiety, and is believed to reach the environment through human excretion, irresponsible disposal of unused medicine, and waste products from manufacturing plants. The purpose of this research was to isolate and characterize potential microbes for PRZ biodegradation and to identify the degradation pathway. After screening, isolated strain STP3 showed a capability for PRZ degradation and was chosen for further analysis. Resting cell assays with PRZ were conducted to identify the intermediate metabolites formed from biodegradation by Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) analysis. Two metabolites degraded from PRZ by STP3 were successfully found, and as these metabolites are derived from the main structure of PRZ, their presence proved PRZ degradation. Draft genome sequencing analysis of STP3 was performed to identify potential enzymes for PRZ biodegradation based on the metabolites found.

    Download PDF (212K)
  • Ehab R. El-Helow, Ramy G. Atalla, Wael A. Sabra, Walid A. Lotfy
    Article type: research-article
    2020 Volume 66 Issue 1 Pages 15-23
    Published: 2020
    Released on J-STAGE: April 13, 2020
    Advance online publication: July 30, 2019
    JOURNAL FREE ACCESS

    Pseudomonas aeruginosa is characterized by its capability to produce extracellular virulence proteins and to establish biofilm-based infections that do not respond easily to conventional treatments. However, the physiological conditions that decrease the fitness of such a persistent pathogen would assist the host to defend itself and reduce the infection prevalence. Therefore, developing treatments against P. aeruginosa requires a quantitative understanding of the relationship between bacterial growth kinetics and secretion of alginate and proteins, in addition to the ecological factors that control their synthesis. For this purpose, we examined various environmental factors that affect the specific product yield coefficients (expressed as g product/OD600) of alginate and extracellular proteins using a mucoid (FRD1) and a non-mucoid (PAO1) clinical isolate of P. aeruginosa, respectively. The results suggested magnesium sulfate, trace elements and hydrogen peroxide as significant variables that positively affect alginate synthesis by the FRD1 cells. However, the production of extracellular proteins by PAO1 was negatively affected by the concentration of ferrous sulfate. For understanding the kinetics of expressing alginate and extracellular proteins by the cells, a well-controlled 5 L tank bioreactor was used. The results suggested that under the bioreactor controlled conditions, both alginate and extracellular proteins are expressed parallel to biomass increase in the cells of P. aeruginosa.

    Download PDF (997K)
  • Thi Hanh Nguyen Vu, Quang Huy Nguyen, Thi My Linh Dinh, Ngoc Tung Quac ...
    Article type: research-article
    2020 Volume 66 Issue 1 Pages 24-31
    Published: 2020
    Released on J-STAGE: April 13, 2020
    Advance online publication: August 02, 2019
    JOURNAL FREE ACCESS

    Endophytic microbes associated with medicinal plants are considered to be potential producers of various bioactive secondary metabolites. The present study investigated the distribution, antimicrobial activity and genetic features of endophytic actinomycetes isolated from the medicinal plant Cinnamomum cassia Presl collected in Hoa Binh province of northern Vietnam. Based on phenotypic characteristics, 111 actinomycetes were isolated from roots, stems and leaves of the host plants by using nine selective media. The isolated actinomycetes were mainly recovered from stems (n = 67; 60.4%), followed by roots (n = 29; 26.1%) and leaves (n = 15; 13.5%). The isolates were accordingly assigned into 5 color categories of aerial mycelium, of which gray is the most dominant (n = 42; 37.8%), followed by white (n = 33; 29.7%), yellow (n = 25; 22,5%), red (n = 8; 7.2%) and green (n = 3; 2.7%). Of the total endophytic actinomycetes tested, 38 strains (occupying 34.2%) showed antimicrobial activity against at least one of nine tested microbes and, among them, 26 actinomycetes (68.4%) revealed anthracycline-like antibiotics production. Analysis of 16S rRNA gene sequences deposited on GenBank (NCBI) of the antibiotic-producing actinomycetes identified 3 distinct genera, including Streptomyces, Microbacterium, and Nocardia, among which Streptomyces genus was the most dominant and represented 25 different species. Further genetic investigation of the antibiotic-producing actinomycetes found that 28 (73.7%) and 11 (28.9%) strains possessed genes encoding polyketide synthase (pks) and nonribosomal peptide synthetase (nrps), respectively. The findings in the present study highlighted endophytic actinomycetes from C. cassia Presl which possessed broad-spectrum bioactivities with the potential for applications in the agricultural and pharmaceutical sectors.

    Download PDF (684K)
  • Medhat Ahmed Abu-Tahon, George Saad Isaac
    Article type: research-article
    2020 Volume 66 Issue 1 Pages 32-40
    Published: 2020
    Released on J-STAGE: April 13, 2020
    Advance online publication: August 20, 2019
    JOURNAL FREE ACCESS

    Trichoderma viride AUMC 13021 isolated from Mangrove soil of Ras Mohammed protected area at Sharm El-Sheikh, Egypt, was optimized to promote chitinase activity under submerged fermentation. The maximum enzyme yield (38.33 U/mg protein) was obtained at 1.4% of colloidal chitin, 96 h of incubation, 35°C, pH 6.5 and 125, rpm and using maltose (1%) and yeast extract (1%) as supplementation of salt basal medium. The enzyme has been purified with an overall yield of 73.1% and 5.48 purification fold, and a specific activity of 210.16 U/mg protein. The molecular mass of the purified chitinase was 62 kDa. Maximal activity of chitinase was recorded at pH 6.5 and 40°C. The highest activity was recorded in the case of colloidal chitin, with an apparent Km value of 6.66 mg/ml and Vmax of 90.8 U/ml. The purified chitinase was activated by Ca2+ and Mn2+ while the activity was inhibited by Hg2+, Zn2+, Cu2+, Co2+, dodecyl sulphate and EDTA. In vivo, the median lethal dose (LD50) was approximately 18.43 mg/kg body weight of Sprague Dawley rats. MTT assay showed that the purified chitinase has a toxic effect to MCF7 with an IC50 value 20 μg/ml, and HCT-116 cell lines with an IC50 value 44 μg/ml. Moreover, the purified enzyme showed significant antifungal activity against Fusarium oxysporum f. sp. lycopersici race 3 the causal agent of tomato wilt.

    Download PDF (478K)
  • Yusuke Suzuki, Atsushi Kouzuma, Kazuya Watanabe
    Article type: research-article
    2020 Volume 66 Issue 1 Pages 41-45
    Published: 2020
    Released on J-STAGE: April 13, 2020
    Advance online publication: August 23, 2019
    JOURNAL FREE ACCESS
    Supplementary material

    Here, we developed an all-in-one, broad host-range CRISPR/Cas9 vector system widely applicable to genome editing of proteobacteria. Plasmid pBBR1-Cas9 was constructed by cloning the cas9 gene from Streptococcus pyogenes into the broad host-range plasmid pBBR1MCS-2. We evaluated its applicability for frameshift mutagenesis of Shewanella oneidensis MR-1. Significant cell death was observed when MR-1 cells were transformed with a pBBR1-Cas9 derivative that expressed a single-guide RNA targeting the crp gene. However, cell death was partially prevented when a donor DNA fragment containing a modified crp sequence with a frameshift mutation was introduced using the same vector. All transformants (9 colonies) contained the expected frameshift mutation in their chromosomal crp genes. These results indicate that this vector system efficiently introduced CRISPR/Cas9-mediated double-strand DNA breaks and subsequent homology-directed repair. This work provides a simple and powerful genome-editing tool for proteobacteria that can harbor pBBR1-based plasmids.

    Download PDF (399K)
Short Communication
  • Yoshio Kimura, Sayaka Kajimoto, Yuuka Yamamoto, Naotaka Tanaka
    Article type: research-article
    2020 Volume 66 Issue 1 Pages 46-50
    Published: 2020
    Released on J-STAGE: April 13, 2020
    Advance online publication: July 09, 2019
    JOURNAL FREE ACCESS
    Supplementary material

    Myxococcus xanthus Nudix hydrolase 2 (Nud2) hydrolyzed oxidized deoxynucleotides, such as 8-oxo-dGTP, 8-oxo-dGDP, 8-OH-dTP, and 2-OH-dATP, and showed the highest specific activity toward 8-oxo-dGTP. Mn2+ was the most effective co-factor for stimulating oxidized deoxynucleotide hydrolase activity. The Km of Nud2 with 8-oxo-dGTP for Mn2+ was 19-fold lower than that for Mg2+, and was 2-fold lower than that with dGTP for Mn2+. The specificity constant (kcat/Km) for 8-oxo-dGTP was 6-fold higher than that for dGTP. Nud2 contains a similar Nudix motif (84AX590GX7REX2EEXGX). Replacement of Ala84 and/or Gly90 in the Nudix motif of Nud2 by Gly or Glu had negligible effects on 8-oxo-dGTP hydrolase activity, suggesting that a strict Nudix motif sequence is not essential for complete hydrolase activity of Nud2.

    Download PDF (449K)
feedback
Top