The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Volume 66 , Issue 6
Showing 1-6 articles out of 6 articles from the selected issue
Full Papers
  • Fan-Ching Hsieh, Lu-Kao Chang, Chih-Hsuan Tsai, Jung-En Kuan, Ke-Feng ...
    Type: research-article
    2020 Volume 66 Issue 6 Pages 297-306
    Published: 2020
    Released: February 26, 2021
    [Advance publication] Released: May 19, 2020
    JOURNALS FREE ACCESS

    An Escherichia coli ATP-dependent two-component protease, ClpYQ(HslUV), targets the SulA molecule, an SOS induced protein. ClpY recognizes, unfolds and translocates the substrates into the proteolytic site of ClpQ for degradation. ClpY is divided into three domains N, I and C. The N domain is an ATPase; the C domain allows for oligomerization, while the I domain coordinates substrate binding. In the ClpYQ complex, two layer pore sites, pore I and II, are in the center of its hexameric rings. However, the actual roles of two outer-loop (130~159 aa, L1 and 175~209 aa, L2) of the ClpY-I domain for the degradation of SulA are unclear. In this study, with ATP, the MBP-SulA molecule was bound to ClpY oligomer(s). ClpYΔL1 (ClpY deleted of loop 1) oligomers revealed an excessive SulA-binding activity. With ClpQ, it showed increased proteolytic activity for SulA degradation. Yet, ClpYΔL2 formed fewer oligomers that retained less proteolytic activity, but still had increased SulA-binding activity. In contrast, ClpYΔpore I had a lower SulA-binding activity. ClpYΔ pore I ΔL2 showed the lowest SulA-binding activity. In addition, ClpY (Q198L, Q200L), with a double point mutation in loop 2, formed stable oligomers. It also had a subtle increase in SulA-binding activity, but displayed less proteolytic activity. As a result, loop 2 has an effect on ClpY oligomerization, substrate binding and delivery. Loop 1 has a role as a gate, to prevent excessive substrate binding. Thus, accordingly, ClpY permits the formation of SulA-ClpY(6x), with ATP(s), and this complex then docks through ClpQ(6x) for ultimate proteolytic degradation.

    Download PDF (983K)
  • Susumu Morigasaki, Akinori Umeyama, Yusuke Kawano, Yasushi Aizawa, Iwa ...
    Type: research-article
    2020 Volume 66 Issue 6 Pages 307-314
    Published: 2020
    Released: February 26, 2021
    [Advance publication] Released: August 07, 2020
    JOURNALS FREE ACCESS
    Supplementary material

    Fermentative production of L-cysteine has been established using Escherichia coli. In that procedure, thiosulfate is a beneficial sulfur source, whereas repressing sulfate utilization. We first found that thiosulfate decreased transcript levels of genes related to sulfur assimilation, particularly whose expression is controlled by the transcription factor CysB. Therefore, a novel approach, i.e. increment of expression of genes involved in sulfur-assimilation, was attempted for further improvement of L-cysteine overproduction. Disruption of the rppH gene significantly augmented transcript levels of the cysD, cysJ, cysM and yeeE genes (≥1.5-times) in medium containing sulfate as a sole sulfur source, probably because the rppH gene encodes mRNA pyrophosphohydrolase that triggers degradation of certain mRNAs. In addition, the ΔrppH strain appeared to preferentially uptake thiosulfate rather than sulfate, though thiosulfate dramatically reduced expression of the known sulfate/thiosulfate transporter complexes in both ΔrppH and wild-type cells. We also found that both YeeE and YeeD are required for the strain without the transporters to grow in the presence of thiosulfate as a sole sulfur source. Therefore, yeeE and yeeD are assigned as genes responsible for thiosulfate uptake (tsuA and tsuB, respectively). In final, we applied the ΔrppH strain to the fermentative production of L-cysteine. Disruption of the rppH gene enhanced L-cysteine biosynthesis, as a result, a strain producing approximately twice as much L-cysteine as the control strain was obtained.

    Download PDF (797K)
  • Hisayuki Komaki, Akio Oguchi, Tomohiko Tamura, Moriyuki Hamada, Natsuk ...
    Type: research-article
    2020 Volume 66 Issue 6 Pages 315-322
    Published: 2020
    Released: February 26, 2021
    [Advance publication] Released: August 14, 2020
    JOURNALS FREE ACCESS
    Supplementary material

    Acrocarpospora is a rare, recently established actinomycete genus of the family Streptosporangiaceae. In the present study, we sequenced whole genomes of the type strains of Acrocarpospora corrugate, Acrocarpospora macrocephala, and Acrocarpospora pleiomorpha to assess their potency as secondary metabolite producers; we then surveyed their nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) gene clusters. The genome sizes of A. corrugate NBRC 13972T, A. macrocephala NBRC 16266T, and A. pleiomorpha NBRC 16267T were 9.3 Mb, 12.1 Mb, and 11.8 Mb, respectively. Each genome contained 12–17 modular NRPS and PKS gene clusters. Among the 23 kinds of NRPS and PKS gene clusters identified from the three strains, eight clusters were conserved in all the strains, six were shared between A. macrocephala and A. pleiomorpha, and the remaining nine were strain-specific. We predicted the chemical structures of the products synthesized by these gene clusters based on bioinformatic analyses. Since the chemical structures are diverse, Acrocarpospora strains are considered an attractive source of diverse nonribosomal peptide and polyketide compounds.

    Download PDF (450K)
  • Hamed Mohamed El-Shora, Reyad Mohamed El-Sharkawy
    Type: research-article
    2020 Volume 66 Issue 6 Pages 323-329
    Published: 2020
    Released: February 26, 2021
    [Advance publication] Released: October 09, 2020
    JOURNALS FREE ACCESS

    The tyrosinase of Penicillium chrysogenum strain AUMC 14100 Accession No. MN219732 was purified to homogeneity and chemically modified by N-ethylmaleimide (NEM) and 5-(dimethylamino)naphthalene-1-sulfonyl chloride (dansyl chloride, DC). The inactivation of the purified enzyme obeyed pseudo-first-order reaction kinetics in the presence of NEM and DC (1–5 mM). The rate constants of the enzyme inactivation by NEM and DC were calculated to be 0.083 mol/min and 0.0013 mol/min, respectively. The recovery of enzyme activity by the protective effect of substrate indicates a non-specific modification of the active center. The order of tyrosinase inactivation kinetics and the substrate protection revealed the essentiality of sulfhydryl and lysyl residues in the enzyme active site and its role in the enzyme catalysis. The immobilized tyrosinase on alginate showed a gradual increase in residual activity over the immobilization time until the fourth hour. The desorptivity of tyrosinase was gradually raised with higher sodium dodecyl sulfate (SDS) concentrations. The immobilized enzyme retained about 70% of its original activity after 8 repeated cycles. Thus, immobilized tyrosinase of Penicillium chrysogenum removed 75% of phenol after 8 cycles and thus seems likely to be a good candidate for phenol removal in aqueous solution.

    Download PDF (482K)
  • Natwara Amatyakul, Suthep Thaniyavarn, Masaaki Morikawa, Jiraporn Than ...
    Type: research-article
    2020 Volume 66 Issue 6 Pages 330-338
    Published: 2020
    Released: February 26, 2021
    [Advance publication] Released: October 02, 2020
    JOURNALS FREE ACCESS

    Aureobasidium pullulans YTP6-14 was demonstrated to be an excellent multiple biosurfactant producer utilizing cheap carbon sources available in Thailand, including glycerol and cassava flour hydrolysate. A. pullulans YTP6-14 maximally produced 1.81 g/l biosurfactant in an aqueous layer (BS-AQ) in a medium containing glycerol, and 7.37 or 6.37 g/l biosurfactant in a heavy oil layer (BS-HO) in cassava flour hydrolysate or a glucose containing medium, respectively. Each BS-AQ and BS-HO had critical micelle concentration values of 41.32 mg/l and 13.51 mg/l, and both biosurfactants formed a stable food oil emulsion and reduced the amount of biofilms formed by Streptococcus sobrinus and Streptococcus mutans. BS-AQ and BS-HO were mainly composed of liamocins or exophilins and massoia lactone, respectively.

    Download PDF (569K)
Short Communication
  • Ryoich Tanaka, Katsuya Nouzaki, Ronald R. Navarro, Tomohiro Inaba, Tom ...
    Type: research-article
    2020 Volume 66 Issue 6 Pages 339-343
    Published: 2020
    Released: February 26, 2021
    [Advance publication] Released: August 21, 2020
    JOURNALS FREE ACCESS
    Supplementary material

    Population shifts in the activated sludge microbiome of a membrane bioreactor (MBR) during the treatment of Ramen noodle-soup wastewater were analyzed by high-throughput sequencing. An MBR underwent stable treatment of wastewater containing increasing oil concentrations (from 135 to 1,350 mg/L) for 26 days; however, after feeding with wastewater containing 2,700 mg/L of oil, the mixed liquor suspended solids and transmembrane pressure exhibited gradual and rapid increases, respectively, leading to clogging of the membrane. Phylogenetic analysis revealed an oil supply-dependent increase in the abundance of Cupriavidus gilardii (relative abundance of 26.2% at Day 30) in the sludge together with Parasegetibacter terrae (9.9%) and Ferruginibacter yonginensis (9.4%). These dominant species may play important roles in noodle-soup wastewater treatment.

    Download PDF (579K)
feedback
Top