地すべり
Online ISSN : 1884-3956
Print ISSN : 0285-2926
ISSN-L : 0285-2926
21 巻, 4 号
選択された号の論文の9件中1~9を表示しています
  • 木全 令子, 宮城 豊彦
    1985 年 21 巻 4 号 p. 1-9
    発行日: 1985/03/25
    公開日: 2011/02/25
    ジャーナル フリー
    In humid temperate region, Landslide is one of the most important processes of slope formation. But usual landform classifications of landslide area were uncertain and even the name of each landform units was not consistant. In this report the authors tried to set up the landform units composing of landslide area on the bases of usual studies and investigations of some Landslides occuring in the Tertiary of Tohoku district, from the point of view that each landform was not only an index of landslide area but also some reflextions of the process or structure of the Landslide.
    The results obtained are summarized as follows.
    1. ‘Topographical height’ is subdivided into four landform units. BLOCK is the height which is not crushed in the process of mass movement and is formed by tension stress. PRESSURE-RIDGE is formed by compression stress towards the movement direction, so it's structure is remarkably clushed. DEBRIS-FLOW-RIDGE and DEBRIS-FLOW-CONE are formed in the process of consumption of the end of landslide area by flow and composed of debris.
    2. ‘Scarp’ is subdivided into two types. SLIDING SCARP is formed by slumping and SEPARATING SCARP is by glock-glide. They are generally divided by topographical feature and pattern of landform arrangement.
    3. ‘Crack’ is subdivided into TENSION CRACK and COMPRESSION CRACK. Tension crack mostly grow at right angle to the movement direction.
    4. ‘Hollow’ which is formed by block-glide and exposes slip surface can be recognized by topographical feature and we call it DITCH-LIKE-HOLLOW.
    Consequently it become evident that each landslide area is composed of the conbination of above nine landform units.
  • Bishop法に基づく逆算法
    山上 拓男, 植田 康宏
    1985 年 21 巻 4 号 p. 10-17_1
    発行日: 1985/03/25
    公開日: 2011/02/25
    ジャーナル フリー
    前2報において, 地すべり地地山の新しい強度定数逆算法の基本概念と, 簡便分割法に基づく逆算手順を述べた。本論文は, この手法を安全率算定式としてBishop法を採用する場へ拡張するものである。Bishop法の安全率算定式は簡便法のそれに比べ幾分複雑であるので, はじめに, Bishop法におけるc-tanφ図の決定方法を説明している。求めるべきc, φはこのc-tanφ図上になければならない。この条件に加え, 逆算法は, 与えられたすべり面に沿う安全率が, 最小安全率であるとの条件をも満足しなければならない。そこで, 次にこれら2つの条件より, c, φの存在範囲を極端に限定する手法を詳述している。最後に, 電算機の助けをかけて, 効率よくc, φを決定する図解法を示した。そして本手法を仮想の3つの問題に適用したところ, 精度, 演算時間の両面で極めて実用的であることが判明した。
  • 第4報神戸市K地区における地すべり防止C.I.P.杭の長期挙動
    石田 陽博, 尾崎 叡司, 坂根 勇
    1985 年 21 巻 4 号 p. 18-28
    発行日: 1985/03/25
    公開日: 2010/06/28
    ジャーナル フリー
    第三紀層神戸層群域の神戸市K地区において, 地すべり斜面に施工されたC.I.P.杭の挙動を4年間継続測定し, 次の結果を得た。
    1) 斜面上部の地下水位は, 降雨との間に時間遅れを持ちながら微小変動を繰り返した。斜面下部の地下水位変動は微小で降雨との間に相関が認められなかった。
    2) 列杭の応力・中間杭の歪・測点の土圧と間隙水圧の変動と地下水位変動との間には相関が認められなかった。
    3) φ・Cの僅かな条件差による杭挙動の差は小であった。
    4) 曲げモーメントは杭固定点付近を最大値とし, 正負両領域にわたる減衰正弦波状分布を示した。
    5) 杭の安全率は, 曲げモーメントと勢断力の両方に対して1.2以上の大きい値を示した。
    6) 4年間の杭挙動継続測定値は, 杭が未だ破壊に至っていない事を示した。
  • 大八木 規夫
    1985 年 21 巻 4 号 p. 29-30
    発行日: 1985/03/25
    公開日: 2010/06/28
    ジャーナル フリー
  • 清水 文健
    1985 年 21 巻 4 号 p. 31-37
    発行日: 1985/03/25
    公開日: 2011/02/25
    ジャーナル フリー
    The large-scale landslide landforms, wish source areas wider than 1 km were mapped by air-photograph interpretation in the Tohoku district between latitude 38°N and latitude 42°N. On the basis of the mapping, characteristics of the distribution of those large-scale landslide landforms are discussed from geomorphological and geological points of view.
    Six regions are recognized as those of concentration in the central part of the Ou Mountains, the Shirakami Mountains, the Hinotodake-Kamura Mountains and the northern part of the Asahi Mountains. Those regions mostly coincide with the areas of the maximum uplift during the Quaternary time in the Tohoku district. Those are also underlain by the zones of the Lower and Middle Miocene sedimentary rocks and submarine volcanic rocks, commonly called “Green Tuff”, and the Quaternary volcanic rocks. The topography in those zones are characterized by cap rock structures.
    The large-scale landslide landforms of the Quaternary volcanic areas are dominantly found in the old and/or dormant volcanoes, and are roughly divided into three types from the main contributing factors of landsliding, the volume in source area, morphology and so on.
    (1) Type 1 is a catastrophic landslide or collapse of a volcanic cone associated with volcanic activity. Its tophographic and structural feature is composed of the so-called the collapse caldera of the source area and hummocky relief of the deposition area. The latter is a typical topographic feature of volcanic dry avala nche deposits composed of megablocks and interstitial fine material. The volume of the source area is the largest of the three types. Examples can be seen in Iwate volcano, Iwaki volcano, Gassan volcano, Cheikai volcano, Zao volcano and Shirataka volcano.
    (2) Type 2 shows a typical landslide landform associated with a gentle arc-shaped main scarp and a moving mass. Main scarp of this type is found on the slope of a thick lava flow near the top of the volcano.
    The activity of the volcanoes, where the landslides of this type occurred, ceased in the late Pleistocene and seems to be almost dormant at present.
    The contributing factor to the landsliding may be a large quantity of water supply related to the late Quaternary climatic change.
    Water are prepared in the form of the perennial snow patches and are supplied by the rapid melting of the perennial snow patches with the rising air temperature. The formative age of the perennial snow patches ranges from the late Pleistocene to the eariest Holocene (period about 18, 000y. B. P. to 8, 000y. B. P.).
    Because the sea level of this period is lower than that of the present, mountains were vigorously dissected. Then the stability of the mountain slopes rapidly deteriorated and a number of large-scale landslides occured.
    Those landslides are found in Hachimantai volcano, Yakeishi volcano, Kurikoma volcano, Funakata volcano, Gassan volcano and Zao volcano.
    (3) Type 3 is recognized along the dissected vally wall in the pyroclastic deposits and pumice fall deposits. Type of movement is mostly rotational. The volume in source area is smaller than that of the type 2. However, the same contributing factor may be important for the landslides of type 3 as the type 2.
  • 中山 康, 西嶋 輝之
    1985 年 21 巻 4 号 p. 37-41
    発行日: 1985/03/25
    公開日: 2011/02/25
    ジャーナル フリー
    The writers plotted a location of active mass movennent on a 30“×45” mesh map.It depends on an observation of a stereoscopic pair of aerophotos and surficial survey. Mass movement lies on the elevated side of thrust fault, an anticlinal axis of active folding and the margin of a tectonic basin. Such statistics are shown in this paper.
    Itoigawa-Shizuoka tectonic line is a greatest thrust fault which has been identified with a boundary line between Eurasian and North American plates since the Central Japan Sea earthquake 1983.
    The division of creep movement and landfall depends on the facies of layer. Clayey soil introduces creep movement and sandy one an accidental fall by heavy stormy rain or the earthquake. Ancient or fossil mass movement marks are found independent of present crustal movement. Artificial land development may lead slope disasters. They may issue from fossil landslides.
    Deposits of dam sites-Miwa, Koshibu, Yasuoka and Hiraoka-are very large along the Tenryu river, which flows through an upheaval district. An occasional mud flow takes its rise at Mt. Hieda along the Ura river, Nagano prefecture.
  • 奥園 誠之
    1985 年 21 巻 4 号 p. 41-43
    発行日: 1985/03/25
    公開日: 2010/06/28
    ジャーナル フリー
  • 特に地形特性からみて
    吉松 弘行
    1985 年 21 巻 4 号 p. 43-48
    発行日: 1985/03/25
    公開日: 2010/06/28
    ジャーナル フリー
  • 1985 年 21 巻 4 号 p. 48
    発行日: 1985年
    公開日: 2010/06/28
    ジャーナル フリー
feedback
Top