Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
Volume 66 , Issue 2
Showing 1-11 articles out of 11 articles from the selected issue
Review
  • Hirobumi Shibata
    2017 Volume 66 Issue 2 Pages 103-111
    Published: February 01, 2017
    Released: February 01, 2017
    [Advance publication] Released: January 16, 2017
    JOURNALS FREE ACCESS FULL-TEXT HTML

    In this review, the synthesis of inorganic materials with various properties using amphiphilic molecules is examined. Amphiphilic molecules are used for the formation of highly ordered mesostructures and the surface modification. Two examples of the mesostructures are crystalline mesoporous titania (TiO2) and the novel visible light responsive mesostuructured titania modified with dye in the pores, which can be fabricated using the molecular self-assemblies of amphiphiles as templates. Surface modification using amphiphilic molecules enables the construction of self-assembled arrays of silica particles and the preparation of a film that can control adsorption/desorption behavior of bovine serum albumin (BSA) by light irradiation.

Oils and Fats
  • Kai-Min Yang, Ming-Ching Cheng, Chih-Wei Chen, Chin-Yin Tseng, Li-Yun ...
    2017 Volume 66 Issue 2 Pages 113-122
    Published: 2017
    Released: February 01, 2017
    [Advance publication] Released: January 18, 2017
    JOURNALS FREE ACCESS

    Algae oil and fish oil are n-3 PUFA mainstream commercial products. The various sources for the stability of n-3 PUFA oxidation are influenced by the fatty acid composition, extraction and refined processing. In this study, the oil stability index (OSI) occurs within 2.3 to 7.6 hours with three different n-3 PUFA rich oil. To set the OSI in the Rancimat test as the oil stability limit and observed various degrees of oxidation (0, 25, 50, 75, 100 and 125%). The volatile oxidation compounds were analyzed via headspace-solid phase microextraction (HS-SPME) and GC/MS. We detected 51 volatile compound variations during the oxidation, which were composed of aldehydes, hydrocarbons, cyclic compounds, alcohols, benzene compounds, ketones, furans, ester and pyrrolidine. The off-flavor characteristics can be strongly influenced by the synergy effects of volatile oxidation compounds. Chemometric analysis (PCA and AHC) was applied to identify the sensitive oxidation marker compounds, which included a (E,E)-2,4-heptadienal appropriate marker, via lipid oxidation in the n-3 PUFA rich oil.

    graphical abstract Fullsize Image
    Download PDF (384K)
  • Herman P. Benecke, Sara K. Allen, Daniel B. Garbark
    2017 Volume 66 Issue 2 Pages 123-131
    Published: 2017
    Released: February 01, 2017
    [Advance publication] Released: January 18, 2017
    JOURNALS FREE ACCESS

    A fractionation methodology of fat, oil and grease (FOG) deposits was developed based on the insolubility of fatty acid salts in dichloromethane (DCM) and the relatively high solubility of fatty acids and triglycerides in DCM. Using this method, coupled with spectral analysis, it was shown that fatty acids rather than fatty acid salts were the predominant species in FOG deposits obtained from three metropolitan locations in the United States and that fatty acid triglycerides were either not detected or were present in very small concentrations. This solubility-based fractionation approach also revealed the presence of nitrogen-containing compounds that had not been previously detected in FOG deposits including peptides and (or) proteins. The comparison of the ratios of stearic acid salts to stearic acid versus the ratio of palmitic acid salts to palmitic acid in FOG deposits may indicate that the initial step in FOG deposit formation is the preferential precipitation of stearic acid salts.

    Download PDF (624K)
Biochemistry and Biotechnology
  • Rehab Farouk M. Ali, Ayman M. El-Anany
    2017 Volume 66 Issue 2 Pages 133-145
    Published: 2017
    Released: February 01, 2017
    [Advance publication] Released: January 18, 2017
    JOURNALS FREE ACCESS

    The current study aimed to evaluate the antioxidant efficiency of different extracts of corn silk. In addition, the impact of corn silk extract on oxidative stability of neem biodiesel during storage was studied. The highest phenolics, DPPH radical scavenging and reducing power activities were recorded for methanol-water extract. The longest oxidation stability (10 h) was observed for biodiesel samples blended with 1000 ppm of corn silk extract (CSE). At the end of storage period the induction time of biodiesel samples mixed with 1000 ppm of CSE or butylated hydroxytoluene (BHT) were about 6.72 and 5.63 times as high as in biodiesel samples without antioxidants. Biodiesel samples blended with 1000 ppm of CSE had the lowest acidity at the end of storage period. Peroxide value of biodiesel samples containing 1000 ppm of CSE was about 4.28 times as low as in control sample without antioxidants.

    Download PDF (726K)
  • A. K. M. Azad Shah, Toshihiro Nagao, Hideyuki Kurihara, Koretaro Takah ...
    2017 Volume 66 Issue 2 Pages 147-155
    Published: 2017
    Released: February 01, 2017
    [Advance publication] Released: January 18, 2017
    JOURNALS FREE ACCESS

    Phospholipids and their partial hydrolysates, namely lysophospholipids (LPLs), have been widely used in food, pharmaceutical, and cosmetic products as highly efficient emulsifiers. This study was conducted to produce docosahexaenoic acid (DHA)-esterified LPLs by enzymatic modification of phospholipids obtained from the head of autumn chum salmon (Oncorhynchus keta). The emulsifying properties of the obtained LPLs were also evaluated. Two different types of substrates of salmon head phospholipids were prepared via silica gel and cold acetone precipitation. Enzymatic partial hydrolysis was carried out using immobilized phospholipase A1 (PLA1) and Lipozyme RM IM. Results showed that the increase in DHA in the LPLs was much higher in the silica-separated phospholipids than in the acetone-precipitated phospholipids. When silica-separated phospholipids were used as the substrate, the DHA content of the LPLs increased from 23.1% to 40.6% and 42.6% after 8 h of partial hydrolysis with Lipozyme RM IM and immobilized PLA1, respectively. The yield of the LPLs was comparatively higher in the Lipozyme RM IM than in the immobilized PLA1 hydrolysis reaction. The critical micelle concentration values of the LPLs and purified lysophosphatidylcholine (LPC) were 100 mg/L and 5 mg/L, respectively. The surface tension values of the LPLs and LPC were reduced to 30.0 mN/m and 30.5 mN/m, respectively. The hydrophilic-lipophilic balance of the LPLs and LPC were 6.0 and 9.4, respectively. Based on the emulsifying properties observed, we conclude that LPLs derived from the phospholipids of salmon head lipids could be used as a health-beneficial emulsifier in the food industry.

    Download PDF (801K)
  • Shinji Yamashita, Riho Sakurai, Kenshiro Hishiki, Kazuhiko Aida, Mikio ...
    2017 Volume 66 Issue 2 Pages 157-160
    Published: 2017
    Released: February 01, 2017
    JOURNALS FREE ACCESS

    In this study, the effects of dietary plant-origin glucosylceramide (GlcCer) on colon cytokine contents were investigated in 1,2-dimethylhydrazine (DMH)-treated mice, a model of colon cancer. DMH treatment induced the formation of aberrant crypt foci (ACF) and the production of inflammatory cytokines and chemokaines. Dietary GlcCer suppressed ACF formation and cytokine production in these mice. In particular, chemokine production was suppressed by dietary GlcCer. These GlcCer-related trends of suppression were similar to those observed in our previous study on dextran sulfate sodium salt (DSS)-treated mice. These results provide further evidence for the suppression of DMH-induced inflammation by dietary GlcCer.

    Download PDF (990K)
Nutrition and Health Function
  • Koji Nagao, Akiko Matsumoto, Shunichi Kai, Tomoko Kayashima, Teruyoshi ...
    2017 Volume 66 Issue 2 Pages 161-169
    Published: 2017
    Released: February 01, 2017
    [Advance publication] Released: January 18, 2017
    JOURNALS FREE ACCESS

    Lipodystrophies are acquired and genetic disorders characterized by the complete or partial absence of body fat with a line of metabolic disorders, including hepatic steatosis. Because soy protein isolate (SPI) has been reported to reduce cholesterol and triglyceride levels in animals and humans, we explored the effect of SPI on the pathophysiology of hepatic lipid accumutaion in a diet-induced lipodystrophy model mice. Four weeks of the lipodystrophy model diet induced hepatic lipid accumulation concomitant with marked deficiencies of adipose tissue and serum adipocytokines in mice. However, supplementing the lipodystrophy model diet with SPI could alleviate the hepatic lipid acculation without affecting the lipoatrophic effect of the diet. Enhanced lipogenesis is the principal mechanism of hepatic steatosis in this model, but SPI supplementation significantly attenuated the increase in enzyme activity and/or mRNA expression. Additionally, SPI supplementation upregulated the hepatic mRNA expression of an enzyme involved in cholesterol catabolism. In conclusion, our results indicate the possibility of dietary SPI to attenuate lipodystorophy-induced hepatic steatosis through the direct reduction of hepatic lipogenesis without affecting adipocytokine production.

    Download PDF (726K)
  • Rieko Tanaka-Yachi, Chie Takahashi-Muto, Kazuya Adachi, Yukina Tanimur ...
    2017 Volume 66 Issue 2 Pages 171-179
    Published: 2017
    Released: February 01, 2017
    JOURNALS FREE ACCESS

    Thermogenic adipocytes that are distinct from classical brown adipocytes (beige adipocytes) were identified in 2012. Beige adipocytes are also called inducible brown adipocytes because their differentiation is induced by a number of physiological stimuli, including adrenaline or myokines. PPARγ is the master regulator of adipogenesis and promotes thermogenic adipocyte differentiation. A PPARγ agonist also promotes thermogenic adipocyte differentiation in mouse white adipose tissues. The vitamin E analog α-tocopherol promotes PPARγ expression and induces mRNA expression of target genes. This study investigated the effects of vitamin E analogs on thermogenic adipocyte differentiation in mouse preadipocytes and rat white adipose tissues. We determined the effects of vitamin E analogs (α-tocopherol and γ-tocopherol) on PPARγ, PGC-1α, and uncoupling protein 1 (UCP1) gene expression in 3T3-L1 cells. UCP1 expression and the mitochondrial contents were confirmed in the cells using immunofluorescence. In an in vivo study, male SD-IGS rats were fed a high-fat diet (HFD), α-tocopherol-enriched HFD, or γ-tocopherol-enriched HFD for 8 weeks before the analysis of PPARγ, PGC-1α, UCP1, and CD137 gene expression, and pathological examinations of white adipose tissues. The expression of PPARγ, PGC-1α, and UCP1 increased in 3T3-L1 cells following α-tocopherol treatment in a concentration-dependent manner. UCP1 expression and mitochondrial content also increased in α-tocopherol-treated cells. According to the histopathological examinations of rat white adipose tissues, multilocular cells were observed in the α-tocopherol intake group. Furthermore, the gene expression levels of PGC-1α, UCP1, and CD137 increased in the α-tocopherol intake group. Our results suggest that α-tocopherol promotes thermogenic adipocyte differentiation in mammalian white adipose tissues.

    Download PDF (1864K)
  • Yasutoshi Ando, Shinichiro Saito, Nami Yamanaka, Chizuka Suzuki, Takah ...
    2017 Volume 66 Issue 2 Pages 181-185
    Published: 2017
    Released: February 01, 2017
    JOURNALS FREE ACCESS

    Consumption of alpha linolenic acid-enriched diacylglycerol (ALA-DAG) reduces visceral fat area. In this study, we performed a randomized, placebo-controlled, double-blind, crossover intervention trial to investigate the effect of ALA-DAG on dietary fat oxidation in comparison with control triacylglycerol (TAG). Each subject (n=16) consumed either 2.5 g/d of ALA-DAG or TAG for 14-d, separated by a 21-d washout period. At the end of each consumption period, we assessed dietary fat oxidation. ALA-DAG consumption significantly enhanced dietary fat utilization as energy compared to TAG consumption.

    Download PDF (308K)
General Subjects
  • Samanthika Senarath, Kazuaki Yoshinaga, Toshiharu Nagai, Akihiko Yoshi ...
    2017 Volume 66 Issue 2 Pages 187-197
    Published: 2017
    Released: February 01, 2017
    [Advance publication] Released: January 18, 2017
    JOURNALS FREE ACCESS

    This study investigated the occurrence and distribution of cis-eicosenoic acid (c-20:1) positional isomers in fishes from the Indian Ocean and compared to those from the Pacific and Atlantic Ocean. Lipids were extracted from the edible part of the fish and then methylated. The eicosenoic acid methyl ester fraction was separated from total fatty acid methyl esters by reversed-phase HPLC and quantitatively analyzed using a GC-FID fitted with the SLB-IL111 highly polar GC column. c14-20:1 was used as an internal standard. The results indicated that the highest levels of c-20:1 positional isomers were found in fishes from the Pacific Ocean (saury, 166.95±12.4 mg/g of oil), followed by the Atlantic Ocean (capelin, 162.7±3.5 mg/g of oil), and lastly in fishes from the Indian Ocean (goatfish, 34.39 mg/g of oil). With only a few exceptions, the most abundant 20:1 positional isomer found in fishes of the Indian and Atlantic Ocean was the c11-20:1 isomer (>50%) followed by the c13-20:1 isomer (<25%). Unusually, the c7-20:1 isomer was predominantly found in a few fishes such as the tooth ponyfish, longface emperor, and commerson’s sole. The c9, c5, and c15-20:1 isomers were the least occurring in fishes from the Indian and Atlantic Ocean. In contrast, the c9-20:1 isomer was the principal isomer identified in fishes from the Pacific Ocean. The results revealed that the content and distribution of c-20:1 positional isomers varied among fishes in different oceans. The data presented in the current study are the first to report on the distribution of c-20:1 positional isomers in fishes from the Indian Ocean.

    Download PDF (498K)
  • Tanutporn Kamsuwan, Piyasan Praserthdam, Bunjerd Jongsomjit
    2017 Volume 66 Issue 2 Pages 199-207
    Published: 2017
    Released: February 01, 2017
    JOURNALS FREE ACCESS

    In the present study, the catalytic dehydration of ethanol over H-beta zeolite (HBZ) catalyst with ruthenium (Ru-HBZ) and platinum (Pt-HBZ) modification was investigated. Upon the reaction temperature between 200 and 400°C, it revealed that ethanol conversion and ethylene selectivity increased with increasing temperature for both Ru and Pt modification. At lower temperature (200 to 250°C), diethyl ether (DEE) was the major product. It was found that Ru and Pt modification on HBZ catalyst can result in increased DEE yield at low reaction temperature due to increased ethanol conversion without a significant change in DEE selectivity. By comparing the DEE yield of all catalysts in this study, the Ru-HBZ catalyst apparently exhibited the highest DEE yield (ca. 47%) at 250°C. However, at temperature from 350 to 400°C, the effect of Ru and Pt was less pronounced on ethylene yield. With various characterization techniques, the effects of Ru and Pt modification on HBZ catalyst were elucidated. It revealed that Ru and Pt were present in the highly dispersed forms and well distributed in the catalyst granules. It appeared that the weak acid sites measured by NH3 temperature-programmed desorption technique also decreased with Ru and Pt promotion. Thus, the increased DEE yields with the Ru and Pt modification can be attributed to the presence of optimal weak acid sites leading to increased intrinsic activity of the catalysts. It can be concluded that the modification of Ru and Pt on HBZ catalyst can improve the DEE yields by ca. 10%.

    Download PDF (1495K)
feedback
Top