Runx2 is essential for osteoblast differentiation and gene expression of bone matrix proteins, however, little is known about the mechanism regulating its activity. In this study, the role of Runx2 on gene expression of transcription factors, AJ18, Msx2, and Dlx5, was examined
in vitro. It is known that AJ18 and Msx2 act as repressors to inhibit activity of Runx2, whereas Dlx5 promotes its activity. An expression vector inserted Runx2 cDNA was transiently overexpressed in a rat multipotential mesenchymal cell line, ROB-C26 (C26). Real time reverse transcription-PCR analysis showed that, in exogenous Runx2-overexpressing C26 cells (C26-Rx), AJ18 expression increased 1.8-fold, Msx2 expression increased 3.0-fold, and Dlx5 expression increased 2.7-fold compared to the cells transfected with vector alone (C26-Co). Luciferase assay also showed that, in C26-Rx, AJ18 promoter activity increased 2.1-fold compared to C26-Co. Furthermore, gene expression of alkaline phosphatase (ALP) and bone matrix proteins including type I collagen (Col1), osteocalcin (OC), osteopontin (OPN), and matrix Gla protein (MGP) was examined. In C26-Rx, MGP expression increased 1.8-fold, and OPN expression increased 1.4-fold compared to C26-Co. However, no significant difference in Col1, ALP, and OC expressions was detected between C26-Rx and C26-Co. These results suggest that the existence of autoregulatory feed back loops, which inhibit Runx2 activity through the interaction of AJ18, Dlx5, and Msx2 cooperating with that of MGP and OPN, interferes with the differentiation of C26 cells toward mature osteoblasts. (J. Oral Sci. 47, 199-207, 2005)
View full abstract