Journal of Power and Energy Systems
Online ISSN : 1881-3062
ISSN-L : 1881-3062
Volume 1, Issue 1
Special Issue on 14th International Conference on Nuclear Engineering I
Displaying 1-12 of 12 articles from this issue
Special Issue on 14th International Conference on Nuclear Engineering I
Papers
  • Akihiro TAGAWA, Masashi UEDA, Takuya YAMASHITA
    2007 Volume 1 Issue 1 Pages 3-12
    Published: 2007
    Released on J-STAGE: March 30, 2007
    JOURNAL FREE ACCESS
    In-service inspection (ISI) is carried out to confirm the integrity of the main components of the Fast Breeder Reactor (FBR) “MONJU”. The weld-joints are examined by using an inspection device which has a glass fiber scope for visual examination and a horizontally polarized shear (SH) wave electromagnetic acoustic transducer (EMAT) for volumetric testing. The ambient temperature during the inspection is 200°C and the irradiation field is 10 Sv/hr (Nominal value 3.5Sv/hr). A new inspection device has been developed in order to improve the visual test performance, volumetric test performance and controllability of the inspection device reflecting the experience of the original test.
    In this paper, detail of the new inspection device and the test results of sensors such as the CCD camera, EMAT and bead sensor are reported. The paper also reports on the CCD camera cooling system and other components.
    Download PDF (3454K)
  • -Heavy Water Mixing Core -
    Toshihisa ISHIDA, Ken-ichi SAWADA, Naoteru ODANO
    2007 Volume 1 Issue 1 Pages 13-23
    Published: 2007
    Released on J-STAGE: March 30, 2007
    JOURNAL FREE ACCESS
    The purpose of this paper is to study the core performance of passive safety small reactor for distributed energy supply by changing the heavy water (D2O) concentration in the mixed coolant together with the fuel pitch. The long core life with conditions of the excessive reactivity of 2 %Δk/k, the reactivity shutdown margin of 1 %Δk/k and the negative coolant temperature reactivity coefficient is attained for the case of D2O concentration of 60% with 10% enrichment gadolinia (Gd2O3) doped fuel rods. This D2O core has a shorter core life 4.14 years than the original light water (H2O) core 4.76 years, while it needs a larger core size. However, changing the D2O concentration on the way during the burn-up shows a possibility of extending more the core life than that of the original H2O core.
    Download PDF (517K)
  • Tetsuaki TAKEDA, Xing YAN, Kazuhiko KUNITOMI
    2007 Volume 1 Issue 1 Pages 24-35
    Published: 2007
    Released on J-STAGE: March 30, 2007
    JOURNAL FREE ACCESS
    The objective of this study is to clarify safety characteristics of a High Temperature Gas-Cooled Reactor (HTGR) for the pipe rupture accident. Japan Atomic Energy Agency (JAEA) has been developing the analytical code for the safety characteristics of the HTGR and carrying out design study of the gas turbine high temperature reactor of 300MWe nominal-capacity for hydrogen production, the GTHTR300C (Gas Turbine High Temperature Reactor 300 for Cogeneration). A numerical analysis of heat and mass transfer fluid flow with multi-component gas mixture has been performed to obtain the variation of the density of the gas mixture, and the onset time of natural circulation of air. From the results obtained in this analysis, it was found that the duration time of the air ingress by molecular diffusion would increase due to the existence of the recuperator in the GTHTR300C system.
    Download PDF (2700K)
  • Isao MINATSUKI, Hiroshi FUKUI, Kazuo ISHINO
    2007 Volume 1 Issue 1 Pages 36-48
    Published: 2007
    Released on J-STAGE: March 30, 2007
    JOURNAL FREE ACCESS
    The hydrogen production method applying thermo-chemical Iodine-Sulfur process (IS process) which uses a nuclear high temperature gas cooled reactor is world widely greatly concerned from the view point of a combination as a clean method, free carbon dioxide in essence. In this process, it is essential a using ceramic material, especially SiC because a operation condition of this process is very corrosive due to a sulfuric acid atmosphere with high temperature and high pressure. In the IS process, a sulfuric acid decomposer is the key component which performs evaporating of sulfuric acid from liquid to gas and disassembling to SO2 gas. SiC was selected as ceramic material to apply for the sulfuric acid decomposer and a new type of binding material was also developed for SiC junction. This technology is expected to wide application not only for a sulfuric acid decomposer but also for various type components in this process. Process parameters were provided as design condition for the decomposer. The configuration of the sulfuric acid decomposer was studied, and a cylindrical tubes assembling type was selected. The advantage of this type is applicable for various type of components in the IS process due to manufacturing with using only simple shape part. A sulfuric acid decomposer was divided into two regions of the liquid and the gaseous phase of sulfuric acid. The thermal structural integrity analysis was studied for the liquid phase part. From the result of this analysis, it was investigated that the stress was below the strength of the breakdown probability 1/100,000 at any position, base material or junction part. The prototype model was manufactured, which was a ceramic portion in the liquid phase part, comparatively complicated configuration, of a sulfuric acid decomposer. The size of model was about 1.9m in height, 1.0m in width. Thirty-six cylinders including inlet and outlet nozzles were combined and each part article was joined using the new binder (slurry binder) and calcinated. Final polishing of the flange faces established in the entrance nozzles was also satisfactory. Many parts were joinable using new technology (new binder). For this reason, new technology is applicable to manufacture of not only a sulfuric acid decomposer but the instruments in the IS process, or other chemical processes.
    Download PDF (1951K)
  • Koichi HATA, Masahiro SHIOTSU, Nobuaki NODA
    2007 Volume 1 Issue 1 Pages 49-63
    Published: 2007
    Released on J-STAGE: March 30, 2007
    JOURNAL FREE ACCESS
    The steady state subcooled flow boiling critical heat flux (CHF) for the flow velocities (u=4.0 to 13.3 m/s), the inlet subcoolings (ΔTsub,in=48.6 to 154.7 K), the inlet pressure (Pin=735.2 to 969.0 kPa) and the increasing heat input (Q0 exp(t/τ), τ=10, 20 and 33.3 s) are systematically measured with the experimental water loop. The 304 Stainless Steel (SUS304) test tube of inner diameter (d=6 mm), heated length (L=66 mm) and L/d=11 with the inner surface of rough finished (Surface roughness, Ra=3.18 μm), the Cupro Nickel (Cu-Ni 30%) test tube of d=6 mm, L=60 mm and L/d=10 with Ra=0.18 μm and the Platinum (Pt) test tubes of d=3 and 6 mm, L=66.5 and 69.6 mm, and L/d=22.2 and 11.6 respectively with Ra=0.45 μm are used in this work. The CHF data for the SUS304, Cu-Ni 30% and Pt test tubes were compared with SUS304 ones for the wide ranges of d and L/d previously obtained and the values calculated by the authors' published steady state CHF correlations against outlet and inlet subcoolings. The influence of the test tube material on CHF is investigated into details and the dominant mechanism of subcooled flow boiling critical heat flux is discussed.
    Download PDF (1383K)
  • Qiusheng LIU, Makoto SHIBAHARA, Katsuya FUKUDA
    2007 Volume 1 Issue 1 Pages 64-75
    Published: 2007
    Released on J-STAGE: March 30, 2007
    JOURNAL FREE ACCESS
    Transient heat transfer coefficients for helium gas flowing over a horizontal plate (ribbon) were measured under wide experimental conditions. The platinum plate with a thickness of 0.1 mm was used as test heater and heated by electric current. The heat generation rate was exponentially increased with a function of Q0exp(t/τ). The gas flow velocities ranged from 4 to 10 m/s, the gas temperatures ranged from 313 to 353 K, and the periods of heat generation rate, τ, ranged from 50 ms to 17 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The dependence of transient heat transfer on the gas flowing velocity becomes weaker when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. An empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data.
    Download PDF (540K)
  • NOVITRIAN, Vaclav DOSTAL, Minoru TAKAHASHI
    2007 Volume 1 Issue 1 Pages 76-86
    Published: 2007
    Released on J-STAGE: March 30, 2007
    JOURNAL FREE ACCESS
    The characteristics of lead-bismuth(Pb-Bi)-water boiling two-phase flow were investigated experimentally and analytically using a Pb-Bi-water direct contact boiling two-phase flow loop. Pb-Bi flow rates and void fraction were measured in a vertical circular tube at conditions of system pressure 7MPa, liquid metal temperature 460°C and injected water temperature 220°C. The drift-flux model with the assumption that bubble sizes were dependent on the fluid surface tension and the density ratio of Pb-Bi to steam-water mixture was chosen and modified by the best fit to the measured void fraction. Pb-Bi flow rates were analytically estimated using balance condition between buoyancy force and pressure losses, where the buoyancy force was calculated from void fraction estimated using the modified drift-flux model. The deviation of the analytical results of the flow rates from the experimental ones was less than 10%.
    Download PDF (443K)
  • Yumi YAMADA, Toyou AKASHI, Minoru TAKAHASHI
    2007 Volume 1 Issue 1 Pages 87-98
    Published: 2007
    Released on J-STAGE: March 30, 2007
    JOURNAL FREE ACCESS
    In a lead-bismuth alloy (45%Pb-55%Bi) cooled direct contact boiling water fast reactor (PBWFR), steam can be produced by direct contact of feed water with primary Pb-Bi coolant in the upper core plenum, and Pb-Bi coolant can be circulated by buoyancy forces of steam bubbles. As a basic study to investigate the two-phase flow characteristics in the chimneys of PBWFR, a two-dimensional two-phase flow was simulated by injecting argon gas into Pb-Bi pool in a rectangular vessel (400mm in length, 1500mm in height), and bubble behavior were investigated experimentally. Bubble sizes, bubble rising velocities and void fractions were measured using void probes. The experimental conditions are the atmospheric pressure and the flow rate of injection Ar gas is 10, 20, and 30 NL/min. The average of measured bubble rising velocity was about 0.6 m/s. The average chord length was about 7mm. An analysis was performed by two-dimensional and two-fluid model. The experimental results were compared with the analytical results to evaluate the validity of the analytical model. Although large diameter bubbles were observed in the experiment, the drag force model of lower value performed better for simulation of the experimental result.
    Download PDF (596K)
  • - System Outline and Endurance Test of Low-Pressure Steam Injectors -
    Shuichi OHMORI, Tadashi NARABAYASHI, Michitsugu MORI, Chikako IWAKI, Y ...
    2007 Volume 1 Issue 1 Pages 99-110
    Published: 2007
    Released on J-STAGE: March 30, 2007
    JOURNAL FREE ACCESS
    A Steam Injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "High-Efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and Emergency Core Cooling System of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a Severe Accident-Free Concept). This paper describes the results of the endurance and performance tests of low-pressure SIs for feed-water heaters with Jet-deaerator and core injection system.
    Download PDF (2598K)
  • Akimaro KAWAHARA, Tatsuya HIGUCHI, Michio SADATOMI, Hiroyuki KUDO
    2007 Volume 1 Issue 1 Pages 111-122
    Published: 2007
    Released on J-STAGE: March 30, 2007
    JOURNAL FREE ACCESS
    Single- and two-phase diversion cross-flows arising from the pressure difference between tight lattice subchannels are our concern in this study. In order to obtain a correlation of the diversion cross-flow, we conducted adiabatic experiments using a vertical multiple-channel with two subchannels simplifying the triangle tight lattice rod bundle for air-water flows at room temperature and atmospheric pressure. In the experiments, data were obtained on the axial variations in the pressure difference between the subchannels, the ratio of flow rate in one subchannel to the whole channel, the void fraction in each subchannel for slug-churn and annular flows in two-phase flow case. These data were analyzed by use of a lateral momentum equation based on a two-fluid model to determine both the cross-flow resistance coefficient between liquid phase and channel wall and the gas-liquid interfacial friction coefficient. The resulting coefficients have been correlated in a way similar to that developed for square lattice subchannel case by Kano et al. (2002); the cross-flow resistance coefficient data can be well correlated with a ratio of the lateral velocity due to the cross-flow to the axial one irrespective of single- and two-phase flows; the interfacial friction coefficient data were well correlated with a reynolds number, which is based on the relative velocity between gas and liquid cross-flows as the characteristic velocity.
    Download PDF (2153K)
feedback
Top