植物学雑誌
Online ISSN : 2185-3835
Print ISSN : 0006-808X
ISSN-L : 0006-808X
46 巻 , 551 号
選択された号の論文の7件中1~7を表示しています
  • Ryôzô Kanehira
    1932 年 46 巻 551 号 p. 669-674
    発行日: 1932年
    公開日: 2011/01/26
    ジャーナル フリー
  • 1932 年 46 巻 551 号 p. 674
    発行日: 1932年
    公開日: 2011/01/26
    ジャーナル フリー
  • M. Honda
    1932 年 46 巻 551 号 p. 675-678
    発行日: 1932年
    公開日: 2011/01/26
    ジャーナル フリー
  • 安田 貞雄
    1932 年 46 巻 551 号 p. 679-689
    発行日: 1932年
    公開日: 2011/01/26
    ジャーナル フリー
    Temperature is an important factor for self fertilization. Extreme coldness is, of course, unfavourable for fertilization. But in general, cool weather is likely more favourable than hot weather for self fertilization in some plants.
    In order to study the effect of temperature upon self fertilization, the following experiments with Petunia violacea were made by the author.
    1. Intra-self pollination (strictly self pollination) was carried on with some self incompatible plants in 1931. As the flower season advanced from the beginning of August toward the end of September, the percentage of seed setting was observed to have gradually increased. But it is not evident that whether this increase in percentage is due to the effect of cool weather or of the so-called “end-season fertility.”
    2. So, the author divided these materials into two groups, one of which was kept in a hot glass house (27°C-40°C) and the other in a cool glass house kept between 18°C-32°C. After that, they were intra-self pollinated. The results showed exactly that cool weather was more favourable for seed bearing than hot weather.
    3. However, it is by no means certain that whether these seeds were produced through self fertilization or through parthenogenesis. In order to see which of these is really responsible, about 30 flowers in each group were left unpollinated, with the result that there was no phenomenon of parthenogenesis observed. Thus, it becomes clear that the increase in seed bearing ability in cool weather must be due to the increase in the fertility.
    4. Does cool weather act on the character of the pistil or on the activity of the pollen? This is a question. So, the author smeared the pistils with the pollen from another plant of the same vegetative line kept under medium condition. In this experiment a similar pollen was applied on to the pistils in each group. Nevertheless, the fertilizing percentage under cool condition was higher than those obtained in hot weather.
    5. Thus, it becomes clear that cool weather affects the character of pistils making it favourable for self fertilization. Again, the high seed bearing percentage must be due to the changed character of pistils and not to the increase in the fertility on the part of eggs. For, the author observed that the cross fertilization was easier in hot weather than under cool condition.
    6. The author took notes of the life-duration of each flower, which was intra-self pollinated immediately after the opening of its anthers. The life-duration was about 10-20% longer during cool weather, say, in October, than during hot weather, say, in August. This may suggest that the longer duration gives to the tubes of the selfed pollen an opportunity to reach the ovules. But the tubes of selfed pollen could penetrated into only onefifth part of the length of the style during flower life in summer, as was reported in the author's foregoing papers. Therefore, such a slight increase in life-duration can not be taken as the cause of self fertilization in cool weather.
    7. The author gathered the flower buds which were to bloom about three days hence, and placed them in two glass bottles containing some amount of water. Each bottle was placed either in a thermostat regulated at 30°C, or in that kept at 22°C. When the flowers opened, their pistils were smeared with the pollen of the same line. After the application of pollen, all bottles were placed in the cooler thermostat. Two days after this pollination, the pistils of these flowers were gathered and fixed, and the length of the pollen tubes penetrated was measured. The results showed that the tube-growth was inhibited more strikingly in the pistiles of the flowers which had been placed, during their bud stages, in a hotter thermostat.
  • 下斗米 直昌
    1932 年 46 巻 551 号 p. 690-700
    発行日: 1932年
    公開日: 2011/01/26
    ジャーナル フリー
    1) 本研究ニ於テハ園藝菊六拾種類ノ染色體數ヲ算定シタガ、其中大輪菊四拾種類ノ體細胞染色體數ハ53乃至67デ、就中60ヲ有スル種類ガ最モ多ク。文人菊貳拾種ノソレハ53乃至55デ染色體數ノ變化ノ範圍ガ大輪菊ニ比シテ遙ニ狭ク、其中54ヲ有スルモノガ最モ多イ。
    2) 大輪菊及ビ文人菊兩者ニ於ケル染色體數ノ變化ノ廣狭ト、ソノ發達トノ關係ヲミルニ、文人菊ガ野生種ノアルモノニ猶未ダ近イモノデアルガ、ソノ染色體數ノ變化ノ範圍ガ極メテ狭ク、大輪菊ハコレニ反シテ高度ニ發達ヲ遂ゲタモノガアルガ、ソノ染色體數ノ變化ノ範園ハ文人菊ニ比シテ廣イカラ、コノ發達ノ程度ト染色體數ノ變化トハ或ル程塵マデ相伴ツテヰルコトガ判ル。
    3) 園藝菊ノ生成ニハモトヨリ一種ノミデナク、數多ノ野生菊ガ與ツテヰルノデアラウケレドモ、此ノ研究ノ結果カラ推セバ、主トシテ體細胞染色體數54ヲ有スルモノガソノ生成ニ與ツテヰルモノト考ヘラレル。而シテ此ノ染色體數ヲ有スル野生種ヲ本邦ニ求ムレバ、のぢぎく及ビにじがはまぎくガコレ等該當スル。
  • 奥貫 一男
    1932 年 46 巻 551 号 p. 701-721
    発行日: 1932年
    公開日: 2011/01/26
    ジャーナル フリー
    In vorliegender Arbeit habe ich den Gaswechsel der Pollen von Camellia japonica und Lilium auratum manometrisch (nach WARBURG) untersucht. Die erhaltenen Resultate werden folgendermassen zusammengefasst:
    1. Die in den Antheren ligenden Pollen führen den Gaswechsel in sehr geringem Maße aus, aber wenn die Pollen in den keimfähigen Zustand gebracht werden, so betätigt sich der Gaswechsel sofort lebhaft.
    2. Der Gaswechsel des Pollens wird bei Camellia japonica durch Zusatz des Rohrzuckers (5.0%) unverkennbar befordert, aber keineswegs bei Lilium auratum.
    3. Der Zusatz von verschiedenen Ionen wirkt auf den Gaswechsel der Pollen hemmend ein; zugleich wird die Keimung des Pollens oder Streckung des Pollenschlauches gehemmt. In Bezug auf die Starke der Hemmung des Gaswechsels wurden die folgenden Ionenreihen festgestellt: Bei den Pollen von Camellia japonica: Sauerstoffaufnahme.
    NO3>SO4>CH3COO>PO4>Cl>H2O
    Li>K>Na>Mg>Ca>H2O
    Kohlensäureabgabe bei der Anaerobiose.
    PO4>NO3>CH3COO>SO4>Cl>H2O
    Li> Mg> Na>H2O
    Die Streckung des Pollenschlauches bei Aerobiose
    NO3>SO4>CH3COO>PO4>Cl>H2O
    Li>Na>K>Mg>Ca>H2O
    bei Anaerobiose
    CH3COO>NO3>SO4>Cl>PO4>H2O
    Li>Na>Mg>H2O
    Bei der Pollen von Lilium auratum: Sauerstoffaufnahme
    CH3COO>NO3>Cl>SO4>H2O ≥PO4
    Li>Na>K>Sr>Mg>H2O>Ca
    Kohkensäureabgabe bei der Anaweobiose
    CH3COO>Cl>PO4>NO3>SO4>H2O
    Li>K>Na>Sr>H2O>Ca>Mg
    Wie aus den oben angegebenen Ionenreihen ersichtlich, steht es hierbei fest, dass ein Parallelismus zwischen der Hemmung der Sauerstoffaufnahme und der Streckung des Pollenschlanches vorhanden ist.
    4. Ca-Ionen, die, wie schon BRINK mitgeteilt hat, auf die Streckung des Pollens begünstigend wirken, befordern auch den Gaswechsel des Pollens von Lilium auratum.
  • 1932 年 46 巻 551 号 p. 722-724
    発行日: 1932年
    公開日: 2011/01/26
    ジャーナル フリー
feedback
Top