Journal of Reproduction and Development
Online ISSN : 1348-4400
Print ISSN : 0916-8818
ISSN-L : 0916-8818
68 巻, 3 号
選択された号の論文の8件中1~8を表示しています
Review
  • Helena FULKA, Pasqualino LOI, Luca PALAZZESE, Michal BENC, Josef FULKA ...
    原稿種別: Review
    2022 年 68 巻 3 号 p. 165-172
    発行日: 2022年
    公開日: 2022/06/01
    [早期公開] 公開日: 2022/04/17
    ジャーナル オープンアクセス

    It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time, it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.

Original Article
  • Qiao-Li ZHANG, Yan WANG, Jian-Sheng LIU, Yan-Zhi DU
    原稿種別: Original Article
    2022 年 68 巻 3 号 p. 173-180
    発行日: 2022年
    公開日: 2022/06/01
    [早期公開] 公開日: 2022/03/02
    ジャーナル オープンアクセス
    電子付録

    Long-term hypercaloric diets may adversely affect the development of ovarian follicles. We investigated the effects of high sugar (HS), high fat low sugar (HFLS), and high fat normal sugar (HFNS) diets on the ovarian follicle development in mice fed with these diets as compared to those fed with normal diet (control) for 180 days. Body weight, gonadal fat, glucose, lipid, insulin, estrous cycle, sex hormones and ovarian tissues were examined, and metabolism-related protein expression in the ovaries was evaluated by immunoblotting. The mice fed with hypercaloric diets showed hyperinsulinemia and hyperlipidemia, and exhibited heavier body and gonadal fat weights, longer estrous cycles, and fewer preantral and antral follicles than mice fed with normal diet. The sex hormone levels in the blood were similar to those in controls, except for significantly elevated estradiol levels in the HS diet group. The AMPKα phosphorylation was reduced, while AKT phosphorylation and caspase-3 levels were increased in the ovarian tissues of mice in all three hypercaloric diet groups than those in control. Taken together, the results suggest hyperinsulinemia and hyperlipidemia as possible mechanisms that impair the development of ovarian follicles in response to long-term exposure to unhealthy hypercaloric diets.

  • DURITAHALA, Mitsuhiro SAKASE, Hiroshi HARAYAMA
    原稿種別: Original Article
    2022 年 68 巻 3 号 p. 181-189
    発行日: 2022年
    公開日: 2022/06/01
    [早期公開] 公開日: 2022/03/03
    ジャーナル オープンアクセス
    電子付録

    In cattle, cryopreserved spermatozoa are generally used for artificial insemination (AI). Many of these specimens exhibit helical movement, although the molecular mechanisms underlying this phenomenon remain unclear. This study aimed to characterize helically motile spermatozoa, investigate the involvement of Ca2+-ATPase in suppressing the appearance of these spermatozoa prior to cryopreservation, and examine the potential of helical movement as an index of sperm quality. In the cryopreserved semen, approximately 50% of spermatozoa were helically motile, whereas approximately 25% were planarly motile. The helically motile samples swam significantly faster than those with planar movement, in both non-viscous medium and viscous medium containing polyvinylpyrrolidone. In contrast, in non-cryopreserved semen, planarly motile spermatozoa outnumbered those that were helically motile. Fluorescence microscopy with Fluo-3/AM and propidium iodide showed that flagellar [Ca2+]i was significantly higher in cryopreserved live spermatozoa than in non-cryopreserved live ones. The percentage of non-cryopreserved helically motile spermatozoa was approximately 25% after washing, and this increased significantly to approximately 50% after treatment with an inhibitor of sarcoplasmic reticulum Ca2+-ATPases (SERCAs), “thapsigargin.” Immunostaining showed the presence of SERCAs in sperm necks. Additionally, the percentages of cryopreserved helically motile spermatozoa showed large inter-bull differences and a significantly positive correlation with post-AI conception rates, indicating that helical movement has the potential to serve as a predictor of the fertilizing ability of these spermatozoa. These results suggest that SERCAs in the neck suppress the cytoplasmic Ca2+-dependent appearance of helically motile spermatozoa with intense force in semen prior to cryopreservation.

  • Arisa SUGIMOTO, Hitomi TSUCHIDA, Mayuko NAGAE, Naoko INOUE, Yoshihisa ...
    原稿種別: Original Article
    2022 年 68 巻 3 号 p. 190-197
    発行日: 2022年
    公開日: 2022/06/01
    [早期公開] 公開日: 2022/03/06
    ジャーナル オープンアクセス

    Reproductive function is suppressed during lactation owing to the suckling-induced suppression of the kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and subsequent suppression of luteinizing hormone (LH) release. Our previous study revealed that somatostatin (SST) neurons mediate suckling-induced suppression of LH release via SST receptor 2 (SSTR2) in ovariectomized lactating rats during early lactation. This study examined whether central SST-SSTR2 signaling mediates the inhibition of ARC Kiss1 expression and LH release in lactating rats during late lactation and whether the inhibition of glutamatergic neurons, stimulators of LH release, is involved in the suppression of LH release mediated by central SST-SSTR2 signaling in lactating rats. A central injection of the SSTR2 antagonist CYN154806 (CYN) significantly increased ARC Kiss1 expression in lactating rats on day 16 of lactation. Dual in situ hybridization revealed that few ARC Kiss1-positive cells co-expressed Sstr2, and some of the ARC Slc17a6 (a glutamatergic neuronal marker)-positive cells co-expressed Sstr2. Furthermore, almost all ARC Kiss1-positive cells co-expressed Grin1, a subunit of N-methyl-D-aspartate (NMDA) receptors. The numbers of Slc17a6/Sstr2 double-labeled and Slc17a6 single-labeled cells were significantly lower in lactating dams than in non-lactating rats whose pups had been removed after parturition. A central injection of an NMDA antagonist reversed the CYN-induced increase in LH release in lactating rats. Overall, these results suggest that central SST-SSTR2 signaling, at least partly, mediates the suppression of ARC Kiss1 expression and LH release by inhibiting ARC glutamatergic interneurons in lactating rats.

    Editor's pick

    Cover Story:
    Ovarian functions, such as follicular development and ovulation, are often suppressed in lactating animals. This may be a strategic adaptation to ensure the survival of lactating mothers by avoiding another pregnancy. The suppression of ovarian functions is assumed to be primarily due to the suckling-induced inhibition of hypothalamic kisspeptin neurons (the master regulators of mammalian reproductive function), followed by the inhibition of gonadotropin-releasing hormone (GnRH) and subsequent gonadotropin release. However, the mechanism mediating this inhibition is not fully understood. Sugimoto et al. demonstrated that central antagonism of somatostatin receptor 2 (SSTR2) increased kisspeptin gene expression levels in the hypothalamus of lactating rats, and that some hypothalamic glutamatergic neurons expressed SSTR2. Additionally, SSTR2 antagonism increased luteinizing hormone (LH) release in lactating rats and central glutamate receptor antagonism reversed this effect. Overall, these results suggest that central somatostatin-SSTR2 signaling, at least partly, mediates the suppression of kisspeptin gene expression and subsequent GnRH/LH release by inhibiting glutamatergic interneurons in lactating rats (Sugimoto et al. Central somatostatin-somatostatin receptor 2 signaling mediates lactational suppression of luteinizing hormone release via the inhibition of glutamatergic interneurons during late lactation in rats. pp. 190–197).

  • Yu-Syuan WEI, Wan-Zhen LIN, Tse-En WANG, Wei-Yun LEE, Sheng-Hsiang LI, ...
    原稿種別: Original Article
    2022 年 68 巻 3 号 p. 198-208
    発行日: 2022年
    公開日: 2022/06/01
    [早期公開] 公開日: 2022/02/26
    ジャーナル オープンアクセス
    電子付録

    Spermatozoa acquire fertilization ability through post-translational modifications. These membrane surface alterations occur in various segments of the epididymis. Quiescin sulfhydryl oxidases, which catalyze thiol-oxidation reactions, are involved in disulfide bond formation, which is essential for sperm maturation, upon transition and migration in the epididymis. Using castration and azoospermia transgenic mouse models, in the present study, we showed that quiescin sulfhydryl oxidase 1 (QSOX1) protein expression and secretion are positively correlated with the presence of testosterone and sperm cells. A two-dimensional in vitro epithelium-sperm co-culture system provided further evidence in support of the notion that both testosterone and its dominant metabolite, 5α-dihydrotestosterone, promote epididymal QSOX1 secretion. We also demonstrated that immature caput spermatozoa, but not mature cauda sperm cells, exhibited great potential to stimulate QSOX1 secretion in vitro, suggesting that sperm maturation is a key regulatory factor for mouse epididymal QSOX1 secretion. Proteomic analysis identified 582 secretory proteins from the co-culture supernatant, of which 258 were sperm-specific and 154 were of epididymal epithelium-origin. Gene Ontology analysis indicated that these secreted proteins exhibit functions known to facilitate sperm membrane organization, cellular activity, and sperm-egg recognition. Taken together, our data demonstrated that testosterone and sperm maturation status are key regulators of mouse epididymal QSOX1 protein expression and secretion.

  • Nattapong NINPETCH, Dagvajamts BADRAKH, HAY MAR KYAW, Kohei KAWANO, Y ...
    原稿種別: Original Article
    2022 年 68 巻 3 号 p. 209-215
    発行日: 2022年
    公開日: 2022/06/01
    [早期公開] 公開日: 2022/02/28
    ジャーナル オープンアクセス

    Factors associated with high milk production levels have been linked to alterations in the endometrial epidermal growth factor (EGF) profile, a cause of reduced fertility in dairy cows. Therefore, we examined the leptin system that connects nutritional status and reproduction in dairy cattle related to reduced fertility in repeat breeder cows. Plasma leptin concentrations were measured in 18 heifers, 20 high-yielding control cows, and 26 repeat breeder cows, showing an altered EGF profile. Then, all repeat breeder cows were infused with seminal plasma (SP) into the vagina at the next estrus to normalize the EGF profile, while heifers and control cows were infused with vehicle alone. All animals were examined for EGF profiles. Eighteen repeat breeder cows, nine heifers, and nine control cows were also determined for leptin receptor (Ob-R) expression levels in the estrous cycle before and after the infusion. SP normalized the EGF profile in 53.8% of the repeat breeder cows. Leptin concentrations were similar in all groups, regardless of the treatment results for the EGF profile. In contrast, Ob-R levels in repeat breeder and control cows were similar and higher than those in heifers before SP treatment. Ob-R in repeat breeders showing a normal EGF profile after treatment decreased to an intermediate level between heifers and control cows and may provide a clue to take measures against repeat breeding in dairy cows.

  • Charley-Lea POLLARD, Ashleigh YOUNAN, Aleona SWEGEN, Zamira GIBB, Chri ...
    原稿種別: Original Article
    2022 年 68 巻 3 号 p. 216-224
    発行日: 2022年
    公開日: 2022/06/01
    [早期公開] 公開日: 2022/03/28
    ジャーナル オープンアクセス
    電子付録

    Treatments that elevate NAD+ levels have been found to improve oocyte quality in mice, cattle, and pigs, suggesting that NAD+ is vital during oocyte maturation. This study aimed to examine the influence of different NAD+ biosynthetic pathways on oocyte quality by inhibiting key enzymes. Porcine oocytes from small antral follicles were matured for 44 h in a defined maturation system supplemented with 2-hydroxynicotinic acid [2-HNA, nicotinic acid phosphoribosyltransferase (NAPRT) inhibitor], FK866 [nicotinamide phosphoribosyltransferase (NAMPT) inhibitor], or gallotannin [nicotinamide mononucleotide adenylyltransferase (NMNAT) inhibitor] and their respective NAD+ pathway modulators (nicotinic acid, nicotinamide, and nicotinamide mononucleotide, respectively). Cumulus expansion was assessed after 22 h of maturation. At 44 h, maturation rates were determined and mature oocytes were fixed and stained to assess spindle formation. Each enzyme inhibitor reduced oocyte maturation rate and adversely affected spindle formation, indicating that NAD+ is required for meiotic spindle assembly. Furthermore, NAMPT and NMNAT inhibition reduced cumulus expansion, whereas NAPRT inhibition affected chromosomal segregation. Treating oocytes with gallotannin and nicotinamide mononucleotide together showed improvements in spindle width, while treating oocytes with 2-HNA and nicotinic acid combined showed an improvement in both spindle length and width. These results indicate that the salvage pathway plays a vital role in promoting oocyte meiotic progression, while the Preiss-Handler pathway is essential for spindle assembly.

  • Saishu YOSHIDA, Hideaki YURINO, Masaaki KOBAYASHI, Naoto NISHIMURA, Ke ...
    原稿種別: Original Article
    2022 年 68 巻 3 号 p. 225-231
    発行日: 2022年
    公開日: 2022/06/01
    [早期公開] 公開日: 2022/04/12
    ジャーナル オープンアクセス

    Pituitary endocrine cells are supplied by Sox2-expressing stem/progenitor cells in the anterior lobe of the adult pituitary gland. These SOX2-positive cells are maintained in two types of microenvironments (niches): the marginal cell layer (MCL)-niche and the parenchymal-niche. Recently, we isolated dense SOX2-positive cell clusters from the parenchymal-niche by taking advantage of their resistance to protease treatment as parenchymal stem/progenitor cell (PS)-clusters. In the present study, by analyzing these isolated PS-clusters, we attempted to identify novel structural characteristics of pituitary stem/progenitor cell niches. Quantitative real-time PCR showed that tight junction-related genes were distinctly expressed in the isolated PS-clusters. Immunocytostaining showed that the tight junction molecules, ZO-1 and occludin, were localized in the apical membrane facing the pseudo-follicle-like structure of the isolated PS-clusters regardless of the expression of S100β, which distinguishes the sub-population of SOX2-positive cells. Furthermore, immunohistochemistry of the pituitary glands of adult rats clearly demonstrated that ZO-1 and occludin were densely present in the parenchymal-niche encircling the pseudo-follicle, while they were observed in the apical membrane in the MCL-niche facing the residual lumen. Collectively, these tight junction-related proteins might be involved in the architecture and maintenance of the plasticity of pituitary stem/progenitor cell niches.

feedback
Top