Breeding Science
Online ISSN : 1347-3735
Print ISSN : 1344-7610
ISSN-L : 1344-7610
Volume 63, Issue 1
Displaying 1-16 of 16 articles from this issue
Editorial
Reviews
  • Tohru Ariizumi, Yoshihito Shinozaki, Hiroshi Ezura
    2013 Volume 63 Issue 1 Pages 3-13
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Yield is the most important breeding trait of crops. For fruit-bearing plants such as Solanum lycopersicum (tomato), fruit formation directly affects yield. The final fruit size depends on the number and volume of cell layers in the pericarp of the fruit, which is determined by the degree of cell division and expansion in the fertilized ovaries. Thus, fruit yield in tomato is predominantly determined by the efficiency of fruit set and the final cell number and size of the fruits. Through domestication, tomato fruit yield has been markedly increased as a result of mutations associated with fruit size and genetic studies have identified the genes that influence the cell cycle, carpel number and fruit set. Additionally, several lines of evidence have demonstrated that plant hormones control fruit set and size through the delicate regulation of genes that trigger physiological responses associated with fruit expansion. In this review, we introduce the key genes involved in tomato breeding and describe how they affect the physiological processes that contribute to tomato yield.
  • Koh Aoki, Yoshiyuki Ogata, Kaori Igarashi, Kentaro Yano, Hideki Nagasa ...
    2013 Volume 63 Issue 1 Pages 14-20
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Completion of tomato genome sequencing project has broad impacts on genetic and genomic studies of tomato and Solanaceae plants. The reference genome sequence derived from Solanum lycopersicum cv ‘Heinz 1706’ serves as the firm basis for sequencing-based approaches to tomato genomics. In this article, we first present a brief summary of the genome sequencing project and a summary of the reference genome sequence. We then focus on recent progress in transcriptome sequencing and small RNA sequencing and show how the reference genome sequence makes these analyses more comprehensive than before. We discuss the potential of in-depth analysis that is based on DNA methylome sequencing and transcription start-site detection. Finally, we describe the current status of efforts to resequence S. lycopersicum cultivars to demonstrate how resequencing can allow the use of intraspecific genomic diversity for detailed phenotyping and breeding.
  • Kenta Shirasawa, Hideki Hirakawa
    2013 Volume 63 Issue 1 Pages 21-30
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Tomato is an important crop and regarded as an experimental model of the Solanaceae family and of fruiting plants in general. To enhance breeding efficiency and advance the field of genetics, tomato has been subjected to DNA marker studies as one of the earliest targets in plants. The developed DNA markers have been applied to the construction of genetic linkage maps and the resultant maps have contributed to quantitative trait locus (QTL) and gene mappings for agronomically important traits, as well as to comparative genomics of Solanaceae. The recently released whole genome sequences of tomato enable us to develop large numbers of DNA markers comparatively easily, and even promote new genotyping methods without DNA markers. In addition, databases for genomes, DNA markers, genetic linkage maps and other omics data, e.g., transcriptome, proteome, metabolome and phenome information, will provide useful information for molecular breeding in tomatoes. The use of DNA marker technologies in conjunction with new breeding techniques will promise to advance tomato breeding.
  • Miyako Kusano, Atsushi Fukushima
    2013 Volume 63 Issue 1 Pages 31-41
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    As tomatoes are one of the most important vegetables in the world, improvements in the quality and yield of tomato are strongly required. For this purpose, omics approaches such as metabolomics and transcriptomics are used not only for basic research to understand relationships between important traits and metabolism but also for the development of next generation breeding strategies of tomato plants, because an increase in the knowledge improves the taste and quality, stress resistance and/or potentially health-beneficial metabolites and is connected to improvements in the biochemical composition of tomatoes. Such omics data can be applied to network analyses to potentially reveal unknown cellular regulatory networks in tomato plants. The high-quality tomato genome that was sequenced in 2012 will likely accelerate the application of omics strategies, including next generation sequencing for tomato breeding. In this review, we highlight the current studies of omics network analyses of tomatoes and other plant species, in particular, a gene coexpression network. Key applications of omics approaches are also presented as case examples to improve economically important traits for tomato breeding.
  • Yoshihiro Okabe, Tohru Ariizumi, Hiroshi Ezura
    2013 Volume 63 Issue 1 Pages 42-48
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    The dwarf tomato variety Micro-Tom is regarded as a model system for functional genomics studies in tomato. Various tomato genomic tools in the genetic background of Micro-Tom have been established, such as mutant collections, genome information and a metabolomic database. Recent advances in tomato genome sequencing have brought about a significant need for reverse genetics tools that are accessible to the larger community, because a great number of gene sequences have become available from public databases. To meet the requests from the tomato research community, we have developed the Micro-Tom Targeting-Induced Local Lesions IN Genomes (TILLING) platform, which is comprised of more than 5000 EMS-mutagenized lines. The platform serves as a reverse genetics tool for efficiently identifying mutant alleles in parallel with the development of Micro-Tom mutant collections. The combination of Micro-Tom mutant libraries and the TILLING approach enables researchers to accelerate the isolation of desirable mutants for unraveling gene function or breeding. To upgrade the genomic tool of Micro-Tom, the development of a new mutagenized population is underway. In this paper, the current status of the Micro-Tom TILLING platform and its future prospects are described.
Research Papers
  • Masanori Yamasaki, Osamu Ideta
    2013 Volume 63 Issue 1 Pages 49-57
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    It is essential to elucidate genetic diversity and relationships among even related individuals and populations for plant breeding and genetic analysis. Since Japanese rice breeding has improved agronomic traits such as yield and eating quality, modern Japanese rice cultivars originated from narrow genetic resource and closely related. To resolve the population structure and genetic diversity in Japanese rice population, we used a total of 706 alleles detected by 134 simple sequence repeat markers in a total of 114 cultivars composed of 94 improved varieties and 20 landraces, which are representative and important for Japanese rice breeding. The landraces exhibit greater gene diversity than improved lines, suggesting that landraces can provide additional genetic diversity for future breeding. Model-based Bayesian clustering analysis revealed six subgroups and admixture situation in the cultivars, showing good agreement with pedigree information. This method could be superior to phylogenetic method in classifying a related population. The leading Japanese rice cultivar, Koshihikari is unique due to the specific genome constitution. We defined Japanese rice diverse sets that capture the maximum number of alleles for given sample sizes. These sets are useful for a variety of genetic application in Japanese rice cultivars.
  • Yoichi Motomura, Fuminori Kobayashi, Julio C. M. Iehisa, Shigeo Takumi
    2013 Volume 63 Issue 1 Pages 58-67
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Low temperature induces expression of Cor (cold-responsive)/Lea (late embryogenesis-abundant) gene family members through C-repeat binding factor (CBF) transcription factors in common wheat. However, the relationship between the genetic loci controlling cold-responsive gene expression and freezing tolerance is unclear. In expression quantitative trait locus (eQTL) analysis, accumulated transcripts of Cor/Lea and CBF genes were quantified in recombinant inbred lines derived from a cross between two common wheat cultivars with different levels of freezing tolerance. Four eQTLs controlling five cold-responsive genes were found, and the major eQTL with the greatest effect was located on the long arm of chromosome 5A. At least the 1D and 5A eQTLs played important roles in development of freezing tolerance in common wheat. The chromosomal location of the 5A eQTL, controlling four cold-responsive genes, coincided with a region homoeologous to a frost-tolerance locus (Fr-Am2) reported as a CBF cluster region in einkorn wheat. The 5A eQTL plays a significant role through Cor/Lea gene expression in cold acclimation of wheat. In addition, our results suggest that one or more CBF copies at the Fr-2 region positively regulate other copies, which might amplify the positive effects of the CBF cluster on downstream Cor/Lea gene activation.
  • Mohamed Elsadig Eltayeb Habora, Amin Elsadig Eltayeb, Mariko Oka, Hisa ...
    2013 Volume 63 Issue 1 Pages 68-76
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Leymus mollis (Triticeae; Poaceae) is a useful genetic resource for wheat (Triticum aestivum L.) breeding via wide hybridization to introduce its chromosomes and integrate its useful traits into wheat. Leymus mollis is highly tolerant to abiotic stresses such as drought and salinity and resistant to various diseases, but the genetic mechanisms controlling its physiological tolerance remain largely unexplored. We identified and cloned an allene oxide cyclase (AOC) gene from L. mollis that was strongly expressed under salt stress. AOC is involved in biosynthesis of jasmonic acid, an important signaling compound that mediates a wide range of adaptive responses. LmAOC cDNA consisted of 717 bp, coding for a protein with 238 amino acids that was highly similar to AOCs from barley (Hordeum vulgare) and other monocots. Subcellular localization using Nicotiana benthamiana confirmed it as a chloroplast-localized protein. LmAOC was found to be a multiple-copy gene, and that some copies were conserved and efficiently expressed in wheat–Leymus chromosome addition lines. LmAOC expression was upregulated under drought, heat, cold and wounding stresses, and by jasmonic acid and abscisic acid. Our results suggest that LmAOC plays an important role in L. mollis adaptation to abiotic stresses and it could be useful for wheat improvement.
  • Noriko Takano-Kai, Hui Jiang, Adrian Powell, Susan McCouch, Itsuro Tak ...
    2013 Volume 63 Issue 1 Pages 77-85
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    GRAIN SIZE 3 (GS3) is a cloned gene that is related to seed length. Here we report the discovery of new deletion alleles at the GS3 locus, each of which confer short seed. We selected ten short seeded cultivars from a collection of 282 diverse cultivars. Sequence analysis across the GS3 gene in these ten cultivars identified three novel alleles and a known allele that contain several independent deletion(s) in the fifth exon of GS These independent deletion variants each resulted in a frameshift mutation that caused a premature stop codon, and they were functionally similar to one another. Each coded for a truncated gene product that behaved as an incomplete dominant allele and conferred a short seeded phenotype. Haplotype analysis of these sequence variants indicated that two of the variants were of japonica origin, and two were from indica. Transformation experiments demonstrated that one of the deletion alleles of GS3 decrease the cell number in the upper epidermis of the glume, resulting in a significant reduction in seed length. The multiple and independent origins of these short seeded alleles indicate that farmers and early breeders imposed artificial selection favoring short seeds.
  • Hironori Katayama, Miho Ohe, Etsuko Sugawara
    2013 Volume 63 Issue 1 Pages 86-95
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Some local cultivars and wilds of Iwateyamanashi (Pyrus ussuriensis var. aromatica) that grows wild in Northern Tohoku, Japan have good aromatic fruit. Iwateyamanashi may be valuable germplasms as a donor of odor compounds in breeding of Japanese pear (Pyrus pyrifolia), because almost all Japanese pear cultivars have faint odor. Fruits odors from a local cultivar ‘Sanenashi’, a wild accession (i0830) in Iwateyamanashi, cultivars of ‘Kosui’ and ‘La France’ were characterized at first with comparative Aroma Extract Dilution Analysis (AEDA). Application of AEDA, based on Gas chromatography/Olfactometry analysis (GC/O), on the odor concentration prepared from ‘Sanenashi’ indicated the presence of 33 odor-active compounds including methyl and ethyl esters, aldehydes and alcohol. The eleven odor compounds from 16 accessions of Iwateyamanashi showed various combinations and wide range of odor concentrations by Principal Component Analysis (PCA). Especially 2 accessions of local cultivar ‘Natsunashi’ plotted in the highly ethyl ester group might be useful for Japanese pear breeding.
  • Min Lu, Pingdong Zhang, Xiangyang Kang
    2013 Volume 63 Issue 1 Pages 96-103
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    In order to produce triploid plants, 2n female gametes were induced by treating female buds and developing embryo sacs of Populus adenopoda Maxim with high temperature exposure. During megasporogenesis, tests were conducted on the relationship between female gametophyte development and morphological changes of female catkins. In the resulting progeny, 12 triploids were produced, and the highest rate of triploid production was 40%. Cytological observation revealed that the pachytene to diakinesis phase of meiotic stages may be a suitable period for inducing megaspore chromosome doubling through high temperature exposure. On the other hand, catkins of 6–72 h after pollination were treated for inducing embryo sac chromosome doubling. In the offspring seedlings, 51 triploids were detected and the highest efficiency of triploid production was 83.33%. Correlation analysis between the proportion of each embryo sac’s developmental stage and the percentage of triploid production indicated that the second mitotic division may be the most effective stage for 2n female gamete induction. Our findings showed that high temperature exposure is an ideal method for 2n female gamete induction. Heterozygous offspring are valuable for breeding programs of P. adenopoda.
  • Makiko Chono, Hitoshi Matsunaka, Masako Seki, Masaya Fujita, Chikako K ...
    2013 Volume 63 Issue 1 Pages 104-115
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8′-hydroxyase gene which was highly expressed during seed development (TaABA8OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8OH1 on the D genome (TaABA8OH1-D) was identified in Japanese cultivars including ‘Tamaizumi’. However, a single mutation in TaABA8OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8OH1 on the A genome (TaABA8OH1-A), TM1833, was identified from gamma-ray irradiation lines of ‘Tamaizumi’. TM1833 (a double mutant in TaABA8OH1-A and TaABA8OH1-D) showed lower TaABA8OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in ‘Tamaizumi’ (a single mutant in TaABA8OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8OH1 may be effective in germination inhibition in field-grown wheat.
  • Takeyuki Kato, Katsunori Hatakeyama, Nobuko Fukino, Satoru Matsumoto
    2013 Volume 63 Issue 1 Pages 116-124
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    In Chinese cabbage (Brassica rapa), the clubroot resistance (CR) gene CRb is effective against Plasmodiophora brassicae isolate No. 14, which is classified as pathotype group 3. Although markers linked to CRb have been reported, an accurate position in the genome and the gene structure are unknown. To determine the genomic location and estimate the structure of CRb, we developed 28 markers (average distance, 20.4 kb) around CRb and constructed a high-density partial map. The precise position of CRb was determined by using a population of 2,032 F2 plants generated by selfing B. rapa ‘CR Shinki.’ We determined that CRb is located in the 140-kb genomic region between markers KB59N07 and B1005 and found candidate resistance genes. Among other CR genes on chromosome R3, a genotype of CRa closest marker clearly matched those of CRb and Crr3 did not confer resistance to isolate No. 14. Based on the genotypes of 11 markers developed near CRb and resistance to isolate No. 14, 82 of 108 cultivars showed a strong correlation between genotypes and phenotypes. The results of this study will be useful for isolating CRb and breeding cultivars with resistance to pathotype group 3 by introducing CRb into susceptible cultivars through marker-assisted selection.
  • Hiroyoshi Iwata, Takeshi Hayashi, Shingo Terakami, Norio Takada, Yutak ...
    2013 Volume 63 Issue 1 Pages 125-140
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding with 76 Japanese pear cultivars to detect significant associations of 162 markers with nine agronomic traits. We applied multilocus Bayesian models accounting for ordinal categorical phenotypes for GWAS and GS model training. Significant associations were detected at harvest time, black spot resistance and the number of spurs and two of the associations were closely linked to known loci. Genome-wide predictions for GS were accurate at the highest level (0.75) in harvest time, at medium levels (0.38–0.61) in resistance to black spot, firmness of flesh, fruit shape in longitudinal section, fruit size, acid content and number of spurs and at low levels (<0.2) in all soluble solid content and vigor of tree. Results suggest the potential of GWAS and GS for use in future breeding programs in Japanese pear.
  • Mariano Bulos, María L. Ramos, Emiliano Altieri, Carlos A. Sala
    2013 Volume 63 Issue 1 Pages 141-146
    Published: 2013
    Released on J-STAGE: April 25, 2013
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Sunflower rust, caused by Puccinia helianthi Schw., can result in significant yield losses in cultivated sunflower (Helianthus annuus L. var. macrocarpus Ckll.). HAR6 is a germplasm population resistant to most predominant rust races. The objectives of this study were to map the resistance factor present in HAR6 (RHAR6), and to provide and validate molecular tools for the identification of this gene for marker assisted selection purposes. Virulence reaction of seedlings for the F2 population and F2:3 families suggested that a single dominant gene confers rust resistance in HAR6-1, a selected rust resistance line from the original population. Genetic mapping with eight markers covered 97.4 cM of genetic distance on linkage group 13 of the sunflower consensus map. A co-dominant marker ZVG61 is the closest marker distal to RHAR6 at a genetic distance of 0.7 cM, while ORS581, a dominant marker linked in the coupling phase, is proximal to RHAR6 at a genetic distance of 1.5 cM. Validation of these markers was assessed by converting a susceptible line into a rust resistant isoline by means of marker assisted backcrossing. The application of these results to assist the breeding process and to design new strategies for rust control in sunflower is discussed.
feedback
Top