Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Volume 29, Issue 3
Displaying 1-13 of 13 articles from this issue
Research Highlight
Minireviews
  • Kasthuri Venkateswaran, Myron T. La Duc, Gerda Horneck
    Article type: Minireview
    2014 Volume 29 Issue 3 Pages 243-249
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: August 12, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    The National Research Council (NRC) has recently recognized the International Space Station (ISS) as uniquely suitable for furthering the study of microbial species in closed habitats. Answering the NRC’s call for the study, in particular, of uncommon microbial species in the ISS, and/or of those that have significantly increased or decreased in number, space microbiologists have begun capitalizing on the maturity, speed, and cost-effectiveness of molecular/genomic microbiological technologies to elucidate changes in microbial populations in the ISS and other closed habitats. Since investigators can only collect samples infrequently from the ISS itself due to logistical reasons, Earth analogs, such as spacecraft-assembly clean rooms, are used and extensively characterized for the presence of microbes. Microbiologists identify the predominant, problematic, and extremophilic microbial species in these closed habitats and use the ISS as a testbed to study their resistance to extreme extraterrestrial environmental conditions. Investigators monitor the microbes exposed to the real space conditions in order to track their genomic changes in response to the selective pressures present in outer space (external to the ISS) and the spaceflight (in the interior of the ISS). In this review, we discussed the presence of microbes in space research-related closed habitats and the resistance of some microbial species to the extreme environmental conditions of space.
  • Nobuyasu Yamaguchi, Michael Roberts, Sarah Castro, Cherie Oubre, Koich ...
    Article type: Minireview
    2014 Volume 29 Issue 3 Pages 250-260
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: August 12, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed.
Regular Papers
  • Xiao-Mei Lv, Ming-Fei Shao, Chao-Lin Li, Ji Li, Xin-lei Gao, Fei-Yun S ...
    Article type: Regular Papers
    2014 Volume 29 Issue 3 Pages 261-268
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: June 24, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and β-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus “Accumulibacter” clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus “Accumulibacter” dominated in A-O sludge.
  • Mariana Lozada, Magalí S. Marcos, Marta G. Commendatore, Mónica N. Gil ...
    Article type: Regular Papers
    2014 Volume 29 Issue 3 Pages 269-276
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: June 24, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    The aim of this study was to design a molecular biological tool, using information provided by amplicon pyrosequencing of 16S rRNA genes, that could be suitable for environmental assessment and bioremediation in marine ecosystems. We selected 63 bacterial genera that were previously linked to hydrocarbon biodegradation, representing a minimum sample of the bacterial guild associated with this process. We defined an ecological indicator (ecological index of hydrocarbon exposure, EIHE) using the relative abundance values of these genera obtained by pyrotag analysis. This index reflects the proportion of the bacterial community that is potentially capable of biodegrading hydrocarbons. When the bacterial community structures of intertidal sediments from two sites with different pollution histories were analyzed, 16 of the selected genera (25%) were significantly overrepresented with respect to the pristine site, in at least one of the samples from the polluted site. Although the relative abundances of individual genera associated with hydrocarbon biodegradation were generally low in samples from the polluted site, EIHE values were 4 times higher than those in the pristine sample, with at least 5% of the bacterial community in the sediments being represented by the selected genera. EIHE values were also calculated in other oil-exposed marine sediments as well as in seawater using public datasets from experimental systems and field studies. In all cases, the EIHE was significantly higher in oiled than in unpolluted samples, suggesting that this tool could be used as an estimator of the hydrocarbon-degrading potential of microbial communities.
  • Rosa Margesin, Stefano Minerbi, Franz Schinner
    Article type: Regular Papers
    2014 Volume 29 Issue 3 Pages 277-285
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: July 10, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    We monitored microbiological properties in two forest sites over a period of 17 years (1993–2010) within the International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICP IM). The two study sites were located in South Tyrol in the Italian Alps at altitudes of 1,737 m a.s.l. (subalpine site IT01) and 570 m a.s.l. (submontane site IT02). Soil samples were collected in the late spring and autumn of 1993, 2000, and 2010, and were characterized by measuring respiration, key enzyme activities involved in the C, N, P, and S cycles and litter degradation, and the abundance of viable bacterial and fungal populations. Over the study period, an increase in mean annual air temperatures at both sites (+0.6°C and +0.8°C at IT01 and IT02, respectively) was calculated from trendlines. Significantly lower mean annual air temperatures, higher temperature fluctuations, and higher annual precipitation rates were observed at site IT01 than at site IT02. Subalpine site IT01 was characterized by significantly lower microbial activity (respiration, enzymes) and abundance than those at submontane site IT02. The year of sampling had a significant effect on all the parameters investigated, except for nitrification. Fungal abundance decreased consistently over the study period, while no consistent trend was noted among the other parameters investigated. Season only affected a few of the measured microbiological parameters: respiration and bacterial numbers were significantly higher in the spring than in the autumn, while the opposite was noted for xylanase and phosphatase activities. Soil fungi contributed essentially to xylanase and protease activities, while soil bacteria were mainly involved in degradation processes that required the activity of sulfatase.
  • Makoto Ikenaga, Masao Sakai
    Article type: Regular Papers
    2014 Volume 29 Issue 3 Pages 286-295
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: July 17, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide–PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3′ end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly generated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide–PCR clamping technique was considered effective for the selective amplification of bacterial genes from extracted DNA containing plant organelle genes.
  • Akira Kawaguchi
    Article type: Regular Papers
    2014 Volume 29 Issue 3 Pages 296-302
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: July 31, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    A nonpathogenic strain of Rhizobium (=Agrobacterium) vitis, ARK-1, limited the development of grapevine crown gall. A co-inoculation with ARK-1 and the tumorigenic strain VAT07-1 at a 1:1 cell ratio resulted in a higher population of ARK-1 than VAT07-1 in shoots without tumors, but a significantly lower population of ARK-1 than VAT07-1 in grapevine shoots with tumors. ARK-1 began to significantly suppress the VAT07-1 population 2 d after the inoculation. This result indicated that ARK-1 reduced the pathogen population at the wound site through biological control. Although ARK-1 produced a zone of inhibition against other tumorigenic Rhizobium spp. in in vitro assays, antibiosis depended on the culture medium. ARK-1 did not inhibit the growth of tumorigenic R. radiobacter strain AtC1 in the antibiosis assay, but suppressed the AtC1-induced formation of tumors on grapevine shoots, suggesting that antibiosis by ARK-1 may not be the main mechanism responsible for biological control.
  • Wai-Tak Wong, Ching-Han Tseng, Shu-Hua Hsu, Huu-Sheng Lur, Chia-Wei Mo ...
    Article type: Regular Papers
    2014 Volume 29 Issue 3 Pages 303-313
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: August 12, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Several Rhodopseudomonas palustris strains have been isolated from rice paddy fields in Taiwan by combining the Winogradsky column method and molecular marker detection. These isolates were initially screened by employing seed germination and seedling vigor assays to evaluate their potential as inoculants. To fulfill the demand in the present farming system for reducing the application of chemical fertilizers, we assessed the plant growth-promoting effects of the R. palustris YSC3, YSC4, and PS3 inoculants on Brassica rapa chinensis (Chinese cabbage) cultivated under a half quantity of fertilizer. The results obtained showed that supplementation with approximately 4.0×106 CFU g−1 soil of the PS3 inoculant at half the amount of fertilizer consistently produced the same plant growth potential as 100% fertility, and also increased the nitrogen use efficiency of the applied fertilizer nutrients. Furthermore, we noted that the plant growth-promotion rate elicited by PS3 was markedly higher with old seeds than with new seeds, suggesting it has the potential to boost the development of seedlings that were germinated from carry-over seeds of poor quality. These beneficial traits suggest that the PS3 isolate may serve as a potential PGPR inoculant for integrated nutrient management in agriculture.
  • Shun Tsuboi, Shigeki Yamamura, Akio Imai, Takayuki Satou, Kazuhiro Iwa ...
    Article type: Regular Papers
    2014 Volume 29 Issue 3 Pages 314-321
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: August 13, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    We investigated spatial and temporal variations in bacterial community structures as well as the presence of three functional proteolytic enzyme genes in the sediments of a hypereutrophic freshwater lake in order to acquire an insight into dynamic links between bacterial community structures and proteolytic functions. Bacterial communities determined from 16S rRNA gene clone libraries markedly changed bimonthly, rather than vertically in the sediment cores. The phylum Firmicutes dominated in the 4–6 cm deep sediment layer sample after August in 2007, and this correlated with increases in interstitial ammonium concentrations (p < 0.01). The Firmicutes clones were mostly composed of the genus Bacillus. npr genes encoding neutral metalloprotease, an extracellular protease gene, were detected after the phylum Firmicutes became dominant. The deduced Npr protein sequences from the retrieved npr genes also showed that most of the Npr sequences used in this study were closely related to those of the genus Bacillus, with similarities ranging from 61% to 100%. Synchronous temporal occurrences of the 16S rRNA gene and Npr sequences, both from the genus Bacillus, were positively associated with increases in interstitial ammonium concentrations, which may imply that proteolysis by Npr from the genus Bacillus may contribute to the marked increases observed in ammonium concentrations in the sediments. Our results suggest that sedimentary bacteria may play an important role in the biogeochemical nitrogen cycle of freshwater lakes.
Short Communications
  • Colin A. Murphree, Qing Li, E. Patrick Heist, Luke A. Moe
    Article type: Short Communication
    2014 Volume 29 Issue 3 Pages 322-325
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: June 17, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    An Enterobacter cloacae strain (E. cloacae F3S3) that was collected as part of a project to assess antibiotic resistance among bacteria isolated from bioethanol fermentation facilities demonstrated high levels of resistance to antibiotics added prophylactically to bioethanol fermentors. PCR assays revealed the presence of canonical genes encoding resistance to penicillin (ampC) and erythromycin (ermG). Assays measuring biofilm formation under antibiotic stress indicated that erythromycin induced biofilm formation in E. cloacae F3S3. Planktonic growth and biofilm formation were observed at a high ethanol content, indicating E. cloacae F3S3 can persist in a bioethanol fermentor under the highly variable environmental conditions found in fermentors.
  • Nanako Kanno, Katsumi Matsuura, Shin Haruta
    Article type: Short Communication
    2014 Volume 29 Issue 3 Pages 326-328
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: June 18, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Survivability under carbon-starvation conditions was investigated in four species of purple phototrophic bacteria: Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodospirillum rubrum, and Rubrivivax gelatinosus. All these test organisms survived longer in the light than in the dark. ATP levels in the cultures were maintained in the light, which indicated that survivability was supported by photosynthesis. Survivability and tolerance against hypertonic stress in the dark was higher in Rhodopseudomonas palustris, which is widely distributed in natural environments including soils, than in the three other species.
  • Takashi Okubo, Seishi Ikeda, Kazuhiro Sasaki, Kenshiro Ohshima, Masahi ...
    Article type: Short Communication
    2014 Volume 29 Issue 3 Pages 329-332
    Published: 2014
    Released on J-STAGE: September 17, 2014
    Advance online publication: August 12, 2014
    JOURNAL FREE ACCESS FULL-TEXT HTML
    Supplementary material
    Metagenomic analysis was applied to bacterial communities associated with the shoots of two field-grown rice cultivars, Nipponbare and Kasalath. In both cultivars, shoot microbiomes were dominated by Alphaproteobacteria (51–52%), Actinobacteria (11–15%), Gammaproteobacteria (9–10%), and Betaproteobacteria (4–10%). Compared with other rice microbiomes (root, rhizosphere, and phyllosphere) in public databases, the shoot microbiomes harbored abundant genes for C1 compound metabolism and 1-aminocyclopropane-1-carboxylate catabolism, but fewer genes for indole-3-acetic acid production and nitrogen fixation. Salicylate hydroxylase was detected in all microbiomes, except the rhizosphere. These genomic features facilitate understanding of plant–microbe interactions and biogeochemical metabolism in rice shoots.
feedback
Top