Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
33 巻, 1 号
選択された号の論文の16件中1~16を表示しています
Research Highlight
Regular Papers
  • Atsushi Ajitomi, Satoshi Taba, Yoshino Ajitomi, Misa Kinjo, Ken-taro S ...
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 4-9
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2017/12/29
    ジャーナル オープンアクセス HTML

    We tested a formulation composed of a mixture of Bidens pilosa var. radiata extract (BPE) and nematode-trapping fungi for its effects on Meloidogyne incognita. In earlier evaluations of the effects of plant extracts on the hyphal growth of 5 species of nematode-trapping fungi with different capture organs (traps), the growth of all species was slightly inhibited. However, an investigation on the number of capture organs and nematode-trapping rates revealed that Arthrobotrys dactyloides formed significantly more rings and nematode traps than those of the control. An evaluation of simple mixed formulations prepared using sodium alginate showed that nematodes were captured with all formulations tested. The simple mixed formulation showed a particularly high capture rate. Furthermore, in a pot test, although the effects of a single formulation made from the fungus or plant extract were acceptable, the efficacy of the simple mixed formulation against M. incognita root-knot formation was particularly high.

  • Arisa Nishihara, Shin Haruta, Shawn E. McGlynn, Vera Thiel, Katsumi Ma ...
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 10-18
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/01/24
    ジャーナル オープンアクセス HTML
    電子付録

    The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72–75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth.

  • Tomohiro Morohoshi, Kento Ogata, Tetsuo Okura, Shunsuke Sato
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 19-25
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/02/01
    ジャーナル オープンアクセス HTML

    Microplastics are fragmented pieces of plastic in marine environments, and have become a serious environmental issue. However, the dynamics of the biodegradation of plastic in marine environments have not yet been elucidated in detail. Polyhydroxyalkanoates (PHAs) are biodegradable polymers that are synthesized by a wide range of microorganisms. One of the PHA derivatives, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) has flexible material properties and a low melting temperature. After an incubation in seawater samples, a significant amount of biofilms were observed on the surfaces of PHBH films, and some PHBH films were mostly or partially degraded. In the biofilms that formed on the surfaces of unbroken PHBH films, the most dominant operational taxonomic units (OTUs) showed high similarity with the genus Glaciecola in the family Alteromonadaceae. On the other hand, the dominant OTUs in the biofilms that formed on the surfaces of broken PHBH films were assigned to the families Rhodobacteraceae, Rhodospirillaceae, and Oceanospirillaceae, and the genus Glaciecola mostly disappeared. The bacterial community in the biofilms on PHBH films was assumed to have dynamically changed according to the progression of degradation. Approximately 50 colonies were isolated from the biofilm samples that formed on the PHBH films and their PHBH-degrading activities were assessed. Two out of three PHBH-degrading isolates showed high similarities to Glaciecola lipolytica and Aestuariibacter halophilus in the family Alteromonadaceae. These results suggest that bacterial strains belonging to the family Alteromonadaceae function as the principal PHBH-degrading bacteria in these biofilms.

  • Satoko Noda, Daichi Shimizu, Masahiro Yuki, Osamu Kitade, Moriya Ohkum ...
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 26-33
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/01/24
    ジャーナル オープンアクセス HTML
    電子付録

    Cellulolytic flagellated protists inhabit the hindgut of termites. They are unique and essential to termites and related wood-feeding cockroaches, enabling host feeding on cellulosic matter. Protists of two genera in the family Teranymphidae (phylum Parabasalia), Eucomonympha and Teranympha, are phylogenetically closely related and harbor intracellular endosymbiotic bacteria from the genus Treponema. In order to obtain a clearer understanding of the evolutionary history of this triplex symbiotic relationship, the molecular phylogenies of the three symbiotic partners, the Teranymphidae protists, their Treponema endosymbionts, and their host termites, were inferred and compared. Strong congruence was observed in the tree topologies of all interacting partners, implying their cospeciating relationships. In contrast, the coevolutionary relationship between the Eucomonympha protists and their endosymbionts was more complex, and evidence of incongruence against cospeciating relationships suggested frequent host switches of the endosymbionts, possibly because multiple Eucomonympha species are present in the same gut community. Similarities in the 16S rRNA and gyrB gene sequences of the endosymbionts were higher among Teranympha spp. (>99.25% and >97.2%, respectively), whereas those between Teranympha and Eucomonympha were lower (<97.1% and <91.9%, respectively). In addition, the endosymbionts of Teranympha spp. formed a phylogenetic clade distinct from those of Eucomonympha spp. Therefore, the endosymbiont species of Teranympha spp., designated here as “Candidatus Treponema teratonymphae”, needs to be classified as a species distinct from the endosymbiont species of Eucomonympha spp.

  • Ryo Ohtomo, Yoshihiro Kobae, Sho Morimoto, Norikuni Oka
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 34-39
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/02/06
    ジャーナル オープンアクセス HTML
    電子付録

    The effective use of arbuscular mycorrhizal (AM) fungal function to promote host plant phosphate uptake in agricultural practice requires the accurate quantitative evaluation of AM fungal infection potential in field soil or AM fungal inoculation material. The number of infection units (IUs), intraradical fungal structures derived from single root entries formed after a short cultivation period, may reflect the number of propagules in soil when pot soil is completely permeated by the host root. However, the original IU method, in which all AM propagules in a pot are counted, requires the fine tuning of plant growing conditions and is considered to be laborious. The objective of the present study was to test whether IU density, not the total count of IU, but the number of IUs per unit root length, reflects the density of AM fungal propagules in soil. IU density assessed after 12 d of host plant cultivation and 3,3′-diaminobenzidine (DAB) staining showed a stronger linear correlation with propagule density than the mean infection percentage (MIP). In addition, IU density was affected less by the host plant species than MIP. We suggest that IU density provides a more rapid and reliable quantitation of the propagule density of AM fungi than MIP or the original IU method. Thus, IU density may be a more robust index of AM fungal infection potential for research and practical applications.

  • Elhussein F Mourad, Mohamed S Sarhan, Hassan-Sibroe A Daanaa, Mennatul ...
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 40-49
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/02/23
    ジャーナル オープンアクセス HTML
    電子付録

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S′, H′, and D′) based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies.

  • Yuniar Devi Utami, Hirokazu Kuwahara, Takumi Murakami, Takahiro Morika ...
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 50-57
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/02/08
    ジャーナル オープンアクセス HTML
    電子付録

    Termite guts harbor diverse yet-uncultured bacteria, including a non-photosynthetic cyanobacterial group, the class “Melainabacteria”. We herein reported the phylogenetic diversity of “Melainabacteria” in the guts of diverse termites and conducted a single-cell genome analysis of a melainabacterium obtained from the gut of the termite Termes propinquus. We performed amplicon sequencing of 16S rRNA genes from the guts of 60 termite and eight cockroach species, and detected melainabacterial sequences in 48 out of the 68 insect species, albeit with low abundances (0.02–1.90%). Most of the melainabacterial sequences obtained were assigned to the order “Gastranaerophilales” and appeared to form clusters unique to termites and cockroaches. A single-cell genome of a melainabacterium, designated phylotype Tpq-Mel-01, was obtained using a fluorescence-activated cell sorter and whole genome amplification. The genome shared basic features with other melainabacterial genomes previously reconstructed from the metagenomes of human and koala feces. The bacterium had a small genome (~1.6 Mb) and possessed fermentative pathways possibly using sugars and chitobiose as carbon and energy sources, while the pathways for photosynthesis and carbon fixation were not found. The genome contained genes for flagellar components and chemotaxis; therefore, the bacterium is likely motile. A fluorescence in situ hybridization analysis showed that the cells of Tpq-Mel-01 and/or its close relatives are short rods with the dimensions of 1.1±0.2 μm by 0.5±0.1 μm; for these bacteria, we propose the novel species, “Candidatus Gastranaerophilus termiticola”. Our results provide fundamental information on “Melainabacteria” in the termite gut and expand our knowledge on this underrepresented, non-photosynthetic cyanobacterial group.

  • Masahiro Mitsuboshi, Yuuzou Kioka, Katsunori Noguchi, Susumu Asakawa
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 58-65
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/02/16
    ジャーナル オープンアクセス HTML
    電子付録

    Preventive measures against soil-borne diseases need to be implemented before cultivation because very few countermeasures are available after the development of diseases. Some soils suppress soil-borne diseases despite the presence of a high population density of pathogens. If the suppressiveness of soil against soil-borne diseases may be predicted and diagnosed for crop fields, it may be possible to reduce the labor and cost associated with excessive disinfection practices. We herein evaluated the suppressiveness of soils in fields with the long-term application of organic amendments by examining the growth of pathogenic Fusarium oxysporum co-cultivated with indigenous soil microorganisms on agar plates. Soils treated with coffee residue compost or rapeseed meal showed suppressiveness against spinach wilt disease by F. oxysporum f. sp. spinaciae or spinach wilt and lettuce root rot diseases by F. oxysporum f. sp. spinaciae and F. oxysporum f. sp. lactucae, respectively, and the growth of pathogenic Fusarium spp. on agar plates was suppressed when co-cultured with microorganisms in a suspension from these soils before crop cultivation. These results indicate the potential of the growth degree of pathogenic F. oxysporum estimated by this method as a diagnostic indicator of the suppressiveness of soil associated with the inhabiting microorganisms. A correlation was found between the incidence of spinach wilt disease in spinach and the growth degree of F. oxysporum f. sp. spinaciae by this co-cultivation method, indicating that suppressiveness induced by organic amendment applications against F. oxysporum f. sp. spinaciae is evaluable by this method. The co-cultivation method may be useful for predicting and diagnosing suppressiveness against soil-borne diseases.

  • Dilruba Sharmin, Yong Guo, Tomoyasu Nishizawa, Shoko Ohshima, Yoshinor ...
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 66-76
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/03/14
    ジャーナル オープンアクセス HTML
    電子付録

    Endohyphal bacteria (EHB), dwelling within fungal hyphae, markedly affect the growth and metabolic potential of their hosts. To date, two EHB belonging to the family Burkholderiaceae have been isolated and characterized as new taxa, Burkholderia rhizoxinica (HKI 454T) and Mycoavidus cysteinexigens (B1-EBT), in Japan. Metagenome sequencing was recently reported for Mortierella elongata AG77 together with its endosymbiont M. cysteinexigens (Mc-AG77) from a soil/litter sample in the USA. In the present study, we elucidated the complete genome sequence of B1-EBT and compared it with those of Mc-AG77 and HKI 454T. The genomes of B1-EBT and Mc-AG77 contained a higher level of prophage sequences and were markedly smaller than that of HKI 454T. Although the B1-EBT and Mc-AG77 genomes lacked the chitinolytic enzyme genes responsible for invasion into fungal cells, they contained several predicted toxin-antitoxin systems including an insecticidal toxin complex and PIN domain imposing an addiction-like mechanism essential for endohyphal growth control during host colonization. Despite the different host fungi, the alignment of amino acid sequences showed that the HKI 454T genome consisted of 1,265 (32.6%) and 1,221 (31.5%) orthologous coding sequences (CDSs) with those of B1-EBT and Mc-AG77, respectively. This comparative study of three phylogenetically associated endosymbionts has provided insights into their origin and evolution, and suggests the later bacterial invasion and adaptation of B1-EBT to its host metabolism.

  • Masashi Okamura, Miyuki Kaneko, Shinjiro Ojima, Hiroki Sano, Junji Shi ...
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 77-82
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/03/01
    ジャーナル オープンアクセス HTML
    電子付録

    Salmonella and Campylobacter cause foodborne enteritis mainly via the consumption of raw/undercooked contaminated poultry meat and products. Broiler flocks are primarily colonized with these bacteria; however, the underlying etiology remains unclear. The present study was conducted in order to obtain further information on the prevalence and genotypic distribution of Salmonella and Campylobacter in free-living crows and broiler flocks in a region for 2 years, thereby facilitating estimations of the potential risk of transmission of C. jejuni from crows to broiler flocks. Salmonella serovars Bredeney and Derby were isolated from 8 and 3 out of 123 captured crows, respectively, both of which are not common in broiler chickens. Campylobacter were isolated from all 89 crows tested and C. jejuni was prevalent (85 crows). Pulsed field gel electrophoresis showed broad diversity in the crow isolates of C. jejuni. However, 3 crow isolates and 2 broiler isolates showing similar banding patterns were assigned to different sequence types in multi-locus sequence typing. These results indicate that crows do not share Salmonella serovars with broilers, and harbor various genotypes of C. jejuni that differ from those of broiler flocks. Thus, our results indicate that crows are not a potential vector of these bacteria to broiler flocks in this region.

  • Nanako Kanno, Katsumi Matsuura, Shin Haruta
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 83-88
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/03/13
    ジャーナル オープンアクセス HTML
    電子付録

    Purple photosynthetic bacteria utilize light energy for growth. We previously demonstrated that light energy contributed to prolonging the survival of multiple purple bacteria under carbon-starved conditions. In order to clarify the effects of illumination on metabolic states under carbon-starved, non-growing conditions, we herein compared the metabolic profiles of starved cells in the light and dark using the purple bacterium, Rhodopseudomonas palustris. The metabolic profiles of starved cells in the light were markedly different from those in the dark. After starvation for 5 d in the light, cells showed increases in the amount of ATP and the NAD+/NADH ratio. Decreases in the amounts of most metabolites related to glycolysis and the TCA cycle in energy-rich starved cells suggest the active utilization of these metabolites for the modification of cellular components. Starvation in the dark induced the consumption of cellular compounds such as amino acids, indicating that the degradation of these cellular components produced ATP in order to maintain viability under energy-poor conditions. The present results suggest that intracellular energy levels alter survival strategies under carbon-starved conditions through metabolism.

  • Yu Nakajima, Takashi Tsukamoto, Yohei Kumagai, Yoshitoshi Ogura, Tetsu ...
    原稿種別: Regular Papers
    2018 年 33 巻 1 号 p. 89-97
    発行日: 2018年
    公開日: 2018/03/29
    [早期公開] 公開日: 2018/03/16
    ジャーナル オープンアクセス HTML
    電子付録

    Light-driven ion-pumping rhodopsins are widely distributed among bacteria, archaea, and eukaryotes in the euphotic zone of the aquatic environment. H+-pumping rhodopsin (proteorhodopsin: PR), Na+-pumping rhodopsin (NaR), and Cl-pumping rhodopsin (ClR) have been found in marine bacteria, which suggests that these genes evolved independently in the ocean. Putative microbial rhodopsin genes were identified in the genome sequences of marine Cytophagia. In the present study, one of these genes was heterologously expressed in Escherichia coli cells and the rhodopsin protein named Rubricoccus marinus halorhodopsin (RmHR) was identified as a light-driven inward Cl pump. Spectroscopic assays showed that the estimated dissociation constant (Kd,int.) of this rhodopsin was similar to that of haloarchaeal halorhodopsin (HR), while the Cl-transporting photoreaction mechanism of this rhodopsin was similar to that of HR, but different to that of the already-known marine bacterial ClR. This amino acid sequence similarity also suggested that this rhodopsin is similar to haloarchaeal HR and cyanobacterial HRs (e.g., SyHR and MrHR). Additionally, a phylogenetic analysis revealed that retinal biosynthesis pathway genes (blh and crtY) belong to a phylogenetic lineage of haloarchaea, indicating that these marine Cytophagia acquired rhodopsin-related genes from haloarchaea by lateral gene transfer. Based on these results, we concluded that inward Cl-pumping rhodopsin is present in genera of the class Cytophagia and may have the same evolutionary origins as haloarchaeal HR.

Short Communications
feedback
Top