Journal of Smooth Muscle Research
Search
OR
Browse
Search
Volume 52
Showing 1-8 articles out of 8 articles from the selected issue
    • |<
    • <
    • 1
    • >
    • >|
Original
  • Igor B. Philyppov, Oksana N. Paduraru, Kseniya L. Gulak, Roman Skryma, ...
    Volume 52 (2016) Pages 1-17
    Released: March 02, 2016
    JOURNALS FREE ACCESS
    TRPA1 is a Ca2+-permeable cation channel that is activated by painful low temperatures (<17°C), irritating chemicals, reactive metabolites and mediators of inflammation. In the bladder TRPA1 is predominantly expressed in sensory afferent nerve endings, where it mediates sensory transduction. The contractile effect of its activation on detrusor smooth muscle (DSM) is explained by the release from sensory afferents of inflammatory factors – tachykinins and prostaglandins, which cause smooth muscle cell contraction. Diabetes is a systemic disease, with common complications being diabetic cystopathies and urinary incontinence. However, data on how diabetes affects bladder contractility associated with TRPA1 activation are not available. In this study, by using a rat model with streptozotocin-induced type I diabetes, contractility measurements of DSM strips in response to TRPA1-activating and modulating pharmacological agents and assessment of TRPA1 mRNA expression in bladder-innervating dorsal root ganglia, we have shown that diabetes enhances the TRPA1-dependent mechanism involved in bladder DSM contractility. This is not due to changes in TRPA1 expression, but mainly due to the general inflammatory reaction caused by diabetes. The latter leads to an increase in cyclooxygenase-2-dependent prostaglandin synthesis through the mechanisms associated with substance P activity. This results in the enhanced functional coupling between the tachykinin and prostanoid systems, and the concomitant increase of their impact on DSM contractility in response to TRPA1 activation.
    View full abstract
    Download PDF (1980K)
Original
  • Sayra M. Stom, Laura E. Phelps, Jacob D. Peuler
    Volume 52 (2016) Pages 18-35
    Released: March 02, 2016
    JOURNALS FREE ACCESS
    Our aims were to determine 1) if resveratrol’s vasorelaxant action is greater in the distal (resistance) versus proximal (conductance) portion of the rat tail artery, and 2) if it can be blocked by agents known to block different potassium (K) channels in arterial smooth muscle. We found that its half-maximally effective concentration values were essentially identical (25 ± 3 versus 27 ± 3 μM) for relaxing adrenergically-precontracted rings prepared from distal versus proximal tissues. This does not confirm a previous report of greater relaxation in resistance versus conductance arteries. We also found that its relaxation could not be blocked by any of seven different K channel blockers. However, we uncovered a novel unanticipated action not yet reported. In half our arterial ring preparations, resveratrol transiently enhanced adrenergically-induced precontractions beginning well before its sustained relaxant effect became apparent. This action provides the first reasonable explanation for previously unexplained increases in arterial pressures observed during acute intravenous administration of resveratrol to animal models of traumatic ischemic tissue injury, in which hypotension is often present and in need of correction. Also unanticipated, this same transient enhancement of adrenergic contraction was notably inhibited by some of the same K channel blockers (particularly tetraethylammonium and glibenclamide) that failed to influence its relaxant effect. Although we do not rule out smooth muscle as a possible site for such a paradoxical finding, we suspect resveratrol could also be acting on K-selective mechano-sensitive ion channels located in the endothelium where they may participate in release of contracting factors.
    View full abstract
    Download PDF (2236K)
Original
  • Masayuki Uchida, Orie Kobayashi, Kaori Iwasawa, Kimiko Shimizu
    Volume 52 (2016) Pages 36-44
    Released: May 10, 2016
    JOURNALS FREE ACCESS
    Aim: Some amino acids been known to influence gastric emptying. Thus we have evaluated the effects of straight alkyl chain, extra hydroxylated alkyl chain and branched chain amino acids on gastric emptying. Materials and Methods: Gastric emptying was evaluated in rats after feeding with Racol (nutrient formulae) containing [1-13C] acetic acid. Using a breath test, the content of 13CO2 in their expired air was measured by infrared analyzers. Rats were orally administered with test amino acids, while control rats were administered orally with distilled water. Results: The expired 13CO2 content in the expired air increased with time, peaked after about 30 min and decreased thereafter. Among the amino acids having an alkyl chain, l-serine, l-alanine and l-glycine, significantly decreased the 13CO2 content and Cmax, and delayed Tmax, suggesting inhibition and delay of gastric emptying. AUC120min values of l-alanine and l-glycine also decreased significantly. l-Threonine significantly decreased 13CO2 content and delayed Tmax, but had no influence on Cmax and AUC120min values, suggesting a delay of gastric emptying. l-Isoleucine and l-leucine and l-valine significantly decreased 13CO2 content, suggesting inhibition of the gastric emptying, but Cmax, Tmax and AUC120min values were not significantly affected. Conclusion: The results show that the amino acids used in the present study had different effects on gastric emptying. Moreover, it was found that inhibition and delay of gastric emptying were clearly classifiable by analyzing the change in 13CO2 content of the expired air and the Cmax, Tmax and AUC120min values.
    View full abstract
    Download PDF (776K)
Invited Review
  • Kosuke Takeya
    Volume 52 (2016) Pages 45-55
    Released: July 01, 2016
    JOURNALS FREE ACCESS
    The regulation of smooth muscle contraction and relaxation involves phosphorylation and dephosphorylation of regulatory proteins, particularly myosin. To elucidate the regulatory mechanisms, analyzing the phosphorylation signal transduction is crucial. Although a pharmacological approach with selective inhibitors is sensitive and a useful technique, it leads to speculation regarding a signaling pathway but does not provide direct evidence of changes at a molecular level. We developed a highly sensitive biochemical technique to analyze phosphorylation by adapting Phos-tag SDS-PAGE. With this technique, we successfully analyzed myosin light chain (LC20) phosphorylation in tiny renal afferent arterioles. In the rat afferent arterioles, endothelin-1 (ET-1) induced diphosphorylation of LC20 at Ser19 and Thr18 as well as monophosphorylation at Ser19 via ET B receptor activation. Considering that LC20 diphosphorylation can decrease the rate of dephosphorylation and thus relaxation, we concluded that LC20 diphosphorylation contributes, at least in part, to the prolonged contraction induced by ET-1 in the renal afferent arteriole.
    View full abstract
    Editor’s picks

    Download PDF (1159K)
Original
  • Masayuki Uchida, Chizuru Iwamoto
    Volume 52 (2016) Pages 56-65
    Released: August 25, 2016
    JOURNALS FREE ACCESS
    Aim: The present study aimed to evaluate the effects of selected straight alkyl chain, hydroxylated chain and branched chain amino acids on gastric adaptive relaxation, as these have previously been shown to have differing effects on gastric emptying. Materials and Methods: Gastric adaptive relaxation was evaluated using a barostat in rats under urethane anesthesia. The pressure within the balloon, introduced from the mouth to the stomach, was changed stepwise from 1 to 8 mmHg. The increased volume just after the increase of balloon pressure was defined as distension-induced gastric adaptive relaxation (accommodation). Amino acids were administered orally or intravenously. Results: As compared with control rats administered with distilled water, those rats that were orally administered amino acids having straight alkyl chain and extra hydroxylated alkyl chain, such as glycine and l-serine, had significantly enhanced gastric adaptive relaxation, but administration of l-alanine and l-threonine did not. Branched chain amino acids, such as l-isoleucine, l-leucine and l-valine, also did not significantly influence gastric adaptive relaxation. Glycine and l-serine showed the same efficacy when administered intravenously. Conclusion: Among the amino acids evaluated in the present study, glycine and l-serine significantly enhanced gastric adaptive relaxation, suggesting that short alkyl chain amino acids may enhance gastric adaptive relaxation as compared with the other amino acids. These findings may suggest that glycine and l-serine would be useful in the therapy of functional dyspepsia, especially for early satiety, because the dysfunction of adaptive relaxation is one of the causes of early satiety.
    View full abstract
    Download PDF (1010K)
Original
  • Simon Lin, Frank V Brozovich
    Volume 52 (2016) Pages 66-77
    Released: October 07, 2016
    JOURNALS FREE ACCESS
    Agonist stimulation of smooth muscle is known to activate RhoA/Rho kinase signaling, and Rho kinase phosphorylates the myosin targeting subunit (MYPT1) of myosin light chain (MLC) phosphatase at Thr696 and Thr853, which inhibits the activity of MLC phosphatase to produce a Ca2+ independent increase in MLC phosphorylation and force (Ca2+ sensitization). Alternative mRNA splicing produces four MYPT1 isoforms, which differ by the presence or absence of a central insert (CI) and leucine zipper (LZ). This study was designed to determine if Rho kinase differentially phosphorylates MYPT1 isoforms. In HEK293T cells expressing each of the four MYPT1 isoforms, we could not detect a change in Thr853 MYPT1 phosphorylation following GTPγS treatment. However, there is differential phosphorylation of MYPT1 isoforms at Thr696; GTPγS treatment increases MYPT1 phosphorylation for the CI+LZ- and CI-LZ- MYPT1 isoforms, but not the CI+LZ+ or CI-LZ+ MYPT1 isoforms. These data could suggest that in smooth muscle Rho kinase differentially phosphorylates MYPT1 isoforms.
    View full abstract
    Download PDF (806K)
Invited Review
  • Lin Hai Kurahara, Keizo Hiraishi, Miho Sumiyoshi, Mayumi Doi, Yaopeng ...
    Volume 52 (2016) Pages 78-92
    Released: November 03, 2016
    JOURNALS FREE ACCESS
    Intestinal fibrosis is an intractable complication of Crohn’s disease (CD), and, when occurring excessively, causes severe intestinal obstruction that often necessitates surgical resection. The fibrosis is characterized by an imbalance in the turnover of extracellular matrix (ECM) components, where intestinal fibroblasts/myofibroblasts play active roles in ECM production, fibrogenesis and tissue remodeling, which eventually leads to the formation of stenotic lesions. There is however a great paucity of knowledge about how intestinal fibrosis initiates and progresses, which hampers the development of effective pharmacotherapies against CD. Recently, we explored the potential implications of transient receptor potential (TRP) channels in the pathogenesis of intestinal fibrosis, since they are known to act as cellular stress sensors/transducers affecting intracellular Ca2+ homeostasis/dynamics, and are involved in a broad spectrum of cell pathophysiology including inflammation and tissue remodeling. In this review, we will place a particular emphasis on the intestinal fibroblast/myofibroblast TRPC6 channel to discuss its modulatory effects on fibrotic responses and therapeutic potential for anti-fibrotic treatment against CD-related stenosis.
    View full abstract
    Download PDF (3539K)
Original
  • Saidullah Bano, Omanwar Swati, Muralidhar Kambadur, Fahim Mohammad
    Volume 52 (2016) Pages 93-104
    Released: December 27, 2016
    JOURNALS FREE ACCESS
    Background: The onset of diabetes causes disruption of respiratory epithelial mediators. The present study investigates whether diabetes modifies the epithelium mediated bronchial responses in hyper-reactive airway smooth muscle (ASM) primarily through nitric oxide (NO), cyclooxygenase (COX), and epithelium derived hyperpolarizing factor (EpDHF) pathways. Methods: Experimental model of guinea pigs having hyper-reactive airways with or without diabetes were developed. The responses of tracheal rings to cumulative concentrations of acetylcholine (ACh) and isoproterenol (IP) in the presence and absence of epithelium and before and after incubation with NO, K+ATP and COX inhibitors, N-(ω)-Nitro-L-arginine methyl ester (L-NAME; 100 μM), glybenclamide (10 μM) and indomethacin (100 μM) were assessed. Results: In diabetic guinea pigs with hyper-reactive airways, a decrease in ACh induced bronchoconstriction was observed after epithelium removal and after incubation with L-NAME/indomethacin, suggesting damage to NO/COX pathways. Hyper-reactivity did not alter the response of trachea to ACh but affected the response to IP which was further reduced in hyper-reactive animals with diabetes. The ASM response to IP after glybenclamide treatment did not alter in hyper-reactive guinea pigs and diabetic guinea pigs with hyper-reactive airways, suggesting damage to the EpDHF pathway. Treatment with indomethacin reduced IP response in the hyper-reactive model, and did not produce any change in diabetic model with hyper-reactive airways, indicating further disruption of the COX pathway. Conclusion: EpDHF pathway is damaged in hyper-reactive guinea pigs and in diabetic guinea pigs with hyper-reactive airways. Diabetes further aggravates the NO and COX mediated pathways in diabetic guinea pigs with hyper-reactive airways.
    View full abstract
    Download PDF (890K)
    • |<
    • <
    • 1
    • >
    • >|
feedback
Top