体力科学
Online ISSN : 1881-4751
Print ISSN : 0039-906X
ISSN-L : 0039-906X
45 巻, 5 号
選択された号の論文の11件中1~11を表示しています
  • 前田 如矢
    1996 年45 巻5 号 p. 477-484
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
  • 平野 弘之, 渡辺 好博, 大貫 義人
    1996 年45 巻5 号 p. 485-493
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
    国民体育大会出場レベルの男子水球選手で15から16才 (平均年齢15.6±0.7才) に整形外科的メディカルチェックを6カ月のあいだ3回にわたり, 身長, 体重, 視力, 外傷歴, 手術歴およびスポーツ歴の総合6項目と身体各部位の整形外科的診察50項目について追跡調査し, 以下の結果を得た.
    1.中学2年生次にスポーツ外傷が多い.
    2.プールサイドでの不注意や悪ふざけに起因する不慮の事故への注意と指導が必要である.
    3.体脂肪率, 体格指数および除脂肪体重は選手間で均一の値を示した.
    4.腸脛靱帯炎と鵞足筋腱炎はメディカルチェック時の指導で予防可能であった.
    5.国体レベルの水球競技に経時的な整形外科的メディカルチェックは有意義であった.
  • 平井 雄介, 田畑 泉
    1996 年45 巻5 号 p. 495-502
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
    This study examined the effects of (1) an intermittent training using a mechanically braked cycle ergometer and (2) resistance training using free weight on the maximal oxygen deficit and VO2max. For the first 6 weeks, six subjects trained using an intermittent training protocol five days per week. The exhaustive intermittent training consisted of seven to eight sets of 20 s exercise at anintensity of about 170% of VO2max with a 10 s rest between each bout. After the training, the maximal oxygen deficit increased significantly from 64.3±5.0 ml⋅kg-1 to 75.1±5.7 ml⋅kg-1 (p<0.01), while VO2max increased from 52.0±2.7 ml⋅kg-1⋅min-1 to 57.6±2.9 ml⋅kg-1⋅min-1 (p<0.05) . For the following 6 weeks, the subjects used the same intermittent training for 3 days per week and a resistance training for the other 3 days per week. The resistance training consisted of (1) 4 sets of 12 bouts of squat and leg curl exercise at 12 repetition maximum (RM) . (2) 2 sets of maximal bouts of the same exercise with a load of 90%, 80%, and 70% of 1 RM. After the training period, the maximal oxygen deficit increased further to the value of 86.8±5.9 ml⋅kg-1which was significantly higher than the value attained at the end of the intermittent training. On the other hand, VO2max did not increase significantly from the value observed at the end of the 6 weeks of intermittent training. Body weight was not significantly changed throughout the 12-week training period. Maximal circumference of the thigh did not changed during the first 6-week of the intermittent training period (pre-training: 57.1±1.2 cm, after 6-week training: 57.3±1.1 cm), while it increased significantly after the last 6-week combined training (59.0±0.8 cm, p<0.05) . In conclusion, this study showed that (1) high intensity intermittent training improves both the anaerobic and aerobic energy supplying systems, (2) additional resistance training with the intermittent training further increases the anaerobic energy supplying system, probably through increased muscle mass.
  • 戸部 秀之, 田中 茂穂, 甲田 道子, 佐竹 隆, 細井 孝之, 折茂 肇
    1996 年45 巻5 号 p. 503-509
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
    Underwater weighing is based on the assumption that fat-free body density is roughly constant among humans. This assumption should be examined, because fat-free body density may in fact depend on the bone mineral and water contents of the body, with fat excluded. The purpose of this study was to investigate the effects of bone mineral content (BMC) and density (BMD) on the accuracy of body fat measured underwater. The subjects were 12 young men (25.1±3.7 years, mean ± SD), some of whom were trained athletes. BMC and BMD were measured by dual-energy x-ray absorptiometry (DXA), as was body fat, as a percentage of body weight; this method is not based on the assumption that fat-free body density is the same in different individual. Body fat as a percen tage of body weight was measured underwater, also. Body fat measured by DXA was significantly correlated with that found by underwater weighing (r = 0.83, p<0.01), as expected, but the mean body fat found by DXA was 4.3% higher. The differences between results by the two methods for individuals were from -11.5% to 2.7%, and the differences were negatively correlated with BMC/fat-free weight (FFW ; r=-0.82, p < 0.01) and BMD (r=-0.85, p<0.01) . Fat-free body density ranged from 1.097 to 1.111 g/cm3because BMC/FFWs varied with the individual. We concluded that individual differences in BMC/FFW and BMD affected the fat-free body density. The variations in fat-free body density would give rise to systematic errors in body composition measured underwater.
  • 狩野 豊, 七五三木 聡, 増田 和実, 坂戸 英樹, 大森 肇, 勝田 茂
    1996 年45 巻5 号 p. 511-518
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
    本研究は, 異なる強度の持久性ランニングトレーニングが左心室筋の毛細血管形態に与える影響について明らかにすることを目的とした.実験にはWistar系雄性ラットを用い, 小動物用トレッドミルにより4週齢時から12週間にわたりランニングトレーニングを負荷した.トレーニング強度は走行速度20m/min, 傾斜0% (T-20群) , 走行速度40m/min, 傾斜0% (T-40群) の2種類を用意し, 運動時間60min/day, 頻度5days/wkの条件で行った.そして, コントロール群 (Cont群) とT-20群ならびにT-40群の3群間で比較検討をした.
    得られた結果は以下の通りである.
    1.心室重量の体重あたりの相対値はCont群と比較して両トレーニング群で有意に高値を示した.
    2.T-20群, T-40群のNN (c, f) とNA (c, f) はCont群と同様な値であった.
    3.T-40群のd (c) とBB (O) はCont群やT-20群と比較して高値を示したが, 統計的な有意差は認められなかった.また, T-40群では内腔の直径が8~10μmの毛細血管の占める割合がCont群やT-20群より有意に高かった.
    以上の結果から, 高強度の持久性ランニングトレーニングによって, 左心室筋の毛細血管内腔面積が拡大することが明らかにされた.また, 本研究に用いられた条件の持久性トレーニングによって毛細血管の新生は生じないことが示された.
  • 見正 富美子, 林達 也, 柴田 真志, 吉武 康栄, 西嶋 泰史, 森谷 敏夫
    1996 年45 巻5 号 p. 519-526
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
    The present study was designed to examine the effects of aerobic exercise on the change of alpha wave component in electroencephalogram (EEG) and plasma β-endorphin. Exercise consisted of 30-min cycling on an ergometer with the load adjusted to elicit a heart rate rise of 50% between resting and predicted maximal value. The EEG signals and blood samples were obtained before and after 30-min exercise. The EEG signal was digitized at a sampling frequency of 64 Hz and analyzed by means of computer-aided decomposition algorithm and frequency power spectral analyses, respectively. The blood samples were immediately centrifuged for 15-min for quantitative analysis of β-endorphin by means of radioimmunoassay method. Results indicated that β-endorphin was significatly (p<.05) greater after exercise as compared to that of the resting contorol. It was also found that the larger the changes in β-endorphin following exercise, the higher the appearance rate of alpha wave in EEG. There was a positive and significant correlation (r=563, p<0.05) between the increase in alpha wave component and that of the plasma β-endorphin. These results suggest that traquilizer effects of aerobic exercise could be explained, at least in part, by the increase of alpha wave component and plasma β-endorphin which in turn bring about the relaxation effects upon the central nervous system.
  • 木下 幸文, 矢野 里佐, 矢野 博己
    1996 年45 巻5 号 p. 527-530
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
  • 石上 惠一
    1996 年45 巻5 号 p. 531-539
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
  • 1996 年45 巻5 号 p. 541-548
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
  • 1996 年45 巻5 号 p. 549-555
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
  • 1996 年45 巻5 号 p. 556-564
    発行日: 1996/10/01
    公開日: 2010/09/30
    ジャーナル フリー
feedback
Top