The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
46 巻, 8 号
選択された号の論文の4件中1~4を表示しています
Review
  • Qing Han, Wei Zhang, JingChong Guo, Qian Zhu, Hui Chen, YongLi Xia, Ga ...
    2021 年 46 巻 8 号 p. 345-358
    発行日: 2021年
    公開日: 2021/08/02
    ジャーナル フリー HTML

    Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children’s learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure.

Original Article
  • Shota Yanagida, Ayano Satsuka, Sayo Hayashi, Atsushi Ono, Yasunari Kan ...
    2021 年 46 巻 8 号 p. 359-369
    発行日: 2021年
    公開日: 2021/08/02
    ジャーナル フリー HTML
    電子付録

    Predicting drug-induced side effects in the cardiovascular system is very important because it can lead to the discontinuation of new drugs/candidates or the withdrawal of marketed drugs. Although chronic assessment of cardiac contractility is an important issue in safety pharmacology, an in vitro evaluation system has not been fully developed. We previously developed an imaging-based contractility assay system to detect acute cardiotoxicity using human iPS cell-derived cardiomyocytes (hiPSC-CMs). To extend the system to chronic toxicity assessment, we examined the effects of the anti-hepatitis C virus (HCV) drug candidate BMS-986094, a guanosine nucleotide analogue, which was withdrawn from phase 2 clinical trials because of unexpected contractility toxicities. Additionally, we examined sofosbuvir, another nucleotide analogue inhibitor of HCV that has been approved as an anti-HCV drug. Motion imaging analysis revealed the difference in cardiotoxicity between the cardiotoxic BMS-986094 and the less toxic sofosbuvir in hiPSC-CMs, with a minimum of 4 days of treatment. In addition, we found that BMS-986094-induced contractility impairment was mediated by a decrease in calcium transient. These data suggest that chronic treatment improves the predictive power for the cardiotoxicity of anti-HCV drugs. Thus, hiPSC-CMs can be a useful tool to assess drug-induced chronic cardiotoxicity in non-clinical settings.

Original Article
  • Norie Murayama, Hiroshi Yamazaki
    2021 年 46 巻 8 号 p. 371-378
    発行日: 2021年
    公開日: 2021/08/02
    ジャーナル フリー HTML

    Dietary-derived coumarin is of clinical interest for its potential hepatotoxicity in humans because such toxicity is especially evident in rats. In this study, the oxidative metabolism of coumarin to active coumarin 3,4-epoxide (as judged by the formation rates of o-hydroxyphenylacetic acid) and excretable 7-hydroxycoumarin was investigated in liver fractions from rats and humans. In rat liver microsomes, the formation rate of o-hydroxyphenylacetic acid (~6 pmol/min/mg microsomal protein) from coumarin at 10 μM was dependent on the presence of liver cytosolic fractions. Rat hepatocytes mediated similar formation rates of o-hydroxyphenylacetic acid and 7-hydroxycoumarin (~0.1 nmol/hr/106 cells) at 0.20–20 μM coumarin. Human hepatocytes mediated the biotransformation of coumarin to o-hydroxyphenylacetic acid at roughly similar rates to those of rat hepatocytes. In contrast, the formation rates of 7-hydroxycoumarin by human hepatocytes were around 10-fold higher at ~1 nmol/hr/106 cells. In the presence of human liver cytosolic fractions, the oxidative formation rate of o-hydroxyphenylacetic acid was relatively high in cytochrome P450 (P450) 1A2-rich human liver microsomes. The inhibitory effects of furafylline/α-naphthoflavone and 8-methoxypsoralen, P450 1A2 and 2A6 inhibitors, respectively, were seen on the rates of o-hydroxyphenylacetic and 7-hydroxylation formations, respectively, in pooled human liver microsomes. Human liver microsomes selectively inactivated for P450 1A2 and 2A6 showed low rates of o-hydroxyphenylacetic acid and 7-hydroxylation formation (~20–30% of control), respectively. Among the P450 isoforms tested, recombinant human P450 1A2 predominantly mediated o-hydroxyphenylacetic formation. These results suggested that the metabolic activation and deactivation of coumarin were mediated mainly by P450 1A2 and 2A6 enzymes, respectively. The metabolic oxidation of coumarin via 3,4-epoxidation forming o-hydroxyphenylacetic acid could inform individual human risk assessments of dietary-derived coumarin, for which hepatotoxicity is especially evident in rats.

Original Article
  • Pinyapach Dungkokkruad, Shunsuke Tomita, Youhei Hiromori, Keishi Ishid ...
    2021 年 46 巻 8 号 p. 379-389
    発行日: 2021年
    公開日: 2021/08/02
    ジャーナル フリー HTML

    Activated charcoal (AC) is a potential candidate antidote against dioxins. However, it is difficult to take AC as a supplement on a daily basis, because its long-term ingestion causes side effects such as constipation and deficiency of fat-soluble essential nutrients and hypocholesterolemia. Alginate-coated AC, termed Health Carbon (HC), was developed to decrease the side effects of AC, but its pharmacological effects, including side effects, remains unclear. Here, we show that HC enhanced fecal excretion of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and decreased some side effects of unmodified AC, such as hypocholesterolemia, in male mice. Basal diet mixed with HC or unmodified AC at various concentrations was fed to mice for 16 days following a single intraperitoneal administration of [3H]TCDD. Both HC and unmodified AC at 3% or more significantly increased fecal excretion of [3H]TCDD in comparison with the control basal diet. Consistent with this, [3H]TCDD radioactivity in the liver—a major TCDD storage organ—was markedly decreased by HC at concentrations of 3% and 10%. In an examination of potential side effects, unmodified AC at 10% or more caused significant body weight reduction and at 20% caused significant hypocholesterolemia. In contrast, HC caused weight gain reduction only at a concentration of 20%, and there was no evidence of hypocholesterolemia at any dietary HC concentration. HC not only retains the ability of AC to enhance fecal excretion of TCDD but also reduces some of the side effects of AC.

feedback
Top