The Keio Journal of Medicine
Online ISSN : 1880-1293
Print ISSN : 0022-9717
ISSN-L : 0022-9717
Volume 62, Issue 1
Displaying 1-3 of 3 articles from this issue
REVIEW
  • Keiji Tanaka
    2013 Volume 62 Issue 1 Pages 1-12
    Published: March 25, 2013
    Released on J-STAGE: March 26, 2013
    JOURNAL FREE ACCESS
    The proteasome is a sophisticated, 2.5-MDa, multisubunit complex that contains a catalytic core particle (CP) and two terminal regulatory particles (RPs); the RPs associate with the termini of the central CP at opposite orientations. The CP consists of four axially stacked heptameric rings (two outer α-rings and two inner β-rings), which are made up of seven structurally related, but not identical, α and β subunits. The CP contains catalytic threonine residues (in β1, β2, and β5 with caspase-like, trypsin-like, and chymotrypsin-like activities, respectively) on the surface of the chamber formed by two abutting β-rings. The RP recognizes polyubiquitylated substrate proteins and unfolds and translocates these proteins to the interior of the CP for degradation. The RP comprises 19 different subunits, which are thought to form two subcomplexes called the lid and the base. One longstanding question is how the complex structure of the proteasome is organized with high fidelity. Recently, we proposed a novel assembly mechanism that is assisted by multiple proteasome-dedicated chaperones. In addition, we discovered two immuno-type proteasomes, the immunoproteasome and the thymoproteasome, whose catalytic subunits are replaced by homologous counterparts. These two isoforms perform specialized functions that help discriminate self from non-self in cell-mediated immunity (i.e., they function as enzymes that process intracellular antigens for cytotoxic T lymphocyte responses and thymic positive selection). Moreover, emerging evidence suggests that the proteasome is crucially involved in the pathophysiology of various intractable diseases that are increasing in today’s aging society.
    Download PDF (2111K)
  • Masato Sawada, Kazunobu Sawamoto
    2013 Volume 62 Issue 1 Pages 13-28
    Published: March 25, 2013
    Released on J-STAGE: March 26, 2013
    JOURNAL FREE ACCESS
    Even in the adult brain, new neurons are continuously generated from endogenous neural stem cells that reside in two restricted regions: the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus of the hippocampus. These new neurons are integrated into the mature neuronal circuitry and become involved in various functions, thereby contributing to structural and functional plasticity in the adult brain. In this review, we summarize our recent findings on the regulatory mechanisms of SVZ neurogenesis under physiological and pathological conditions in various animal models. Some of these findings were presented in the Kitazato Prize Lecture at Keio University School of Medicine in 2011.
    Download PDF (5702K)
  • Keisuke Horiuchi
    2013 Volume 62 Issue 1 Pages 29-36
    Published: March 25, 2013
    Released on J-STAGE: March 26, 2013
    JOURNAL FREE ACCESS
    Many membrane-bound molecules are cleaved at the cell surface, thereby releasing their extracellular domains. This process, often referred to as ectodomain shedding, has emerged as a critical post-translational mechanism for various membrane-bound ligands, receptors, and adhesion molecules. Tumor necrosis factor α (TNFα)-converting enzyme (TACE/ADAM17) was originally identified as an enzyme responsible for releasing the membrane-bound TNFα precursor. However, subsequent studies found an exceptionally large number of target molecules of TACE, including the ligands for epidermal growth factor receptor, L-selectin, CD44, and vascular growth factor receptor 2. Furthermore, in vivo studies using TACE-conditional knockout mice demonstrated the crucial roles of TACE and ectodomain shedding under both physiological and pathological conditions. However, the potential clinical application of the manipulation of TACE activity remains to be investigated.
    Download PDF (876K)
feedback
Top