Cohesive powders are troublesome in terms of flow reliability, consistency and accuracy, posing great challenges in manufacturing. In this article the current understanding of rheological behaviour of powders, considering bulk friction and apparent shear viscosity, is reviewed. Flow rules accounting for particle properties, process dynamics, and their interactions have been proposed in literature, but require rigorous experimental validation. The suitability of state-of-the-art instruments for this purpose is critically reviewed. The current understanding of the influence of particle properties, fluid drag and shear strain rate on the dynamics of powder flow is summarised, including the topical subject of powder spreadability for additive manufacturing.
Supercritical hydrothermal synthesis is a promising methodology of nanoparticle fabrication. This review introduces principles of the process as well as the characteristics of the products synthesized by the method. The process design of the supercritical method, surface control by organic modification, and the possible application of the nanohybrid materials are focused on.
Microorganisms are ubiquitous in the Earth’s biosphere. Majority of them poses a threat for humans, being either naturally occurring or artificially introduced into the air and forming bioaerosols. Bringing together the contemporary status of information in the area, this ‘eye-opening’ article characterizes in condensed form the environmental sources of microbial aerosols, their role in atmospheric processes, provides their physical and biological characteristics which result in adverse health effects, discusses analytical techniques used for their quantitative and qualitative evaluation, presents methods for establishing standards of exposure, and comments on their usefulness in the control and protection of environment and health.
The recent pandemic of COVID-19 brings the topic of vaccines and the urgency with which they are required into the popular literature. This article focuses on the merits of using nanovaccines to establish mucosal immunity in the respiratory tract the primary site of infection and transmission for a variety of infectious diseases. Targeting the innate immune response which is mediated by airway macrophages, the host cell for some pathogens, can be achieved with a variety of nanoparticle technologies conferring protection from the disease.
With increasing quantity of waste generated and fast growing concerns about climate change, there has been renewed impetus recently to develop advanced thermochemical processes using waste biomass as a feedstock. This is because these processes have the potential to add value to cheap and abundant materials by converting them into advanced biofuels and chemicals. This reviews paper is concerned principally with newest applications of fluidised bed reactors for waste treatment, with particular attention given to those processes aimed at the production of clean syngas for the subsequent synthesis of high-value products, including bio-hydrogen, synthetic natural gas, and liquid fuels.
The role of modeling and simulation becomes more important in the era of digital transformation. As designated in Industry 4.0 and Society 5.0, a smart factory will appear, where cyber and physical spaces will be highly integrated. A physics simulation-based digital twin is one of the promising technologies. This paper presents the latest numerical models for powder systems, which will contribute to the realization of the digital twin in the future.
Understanding particle properties and powder behavior during handling and processing requires the characterization of the inner-core and surface properties. Most routine characterization methods involve the former. However, the dynamic behavior of large collections of particles, even if they are much larger than the nanoparticle scale, are dominated by their surface energy at the bulk (square meter, not microscopic) level. Bulk-surface energy of powder blends can differentiate between uniform mixing and the system’s inability to reach mixing equilibrium. Single-particle microscopic characterization techniques, while excellent complement to bulk-level methods, are not ideal for assessing surface energy in connection to properties like powder flow. However, microscopic techniques are invaluable in predicting some bulk-level properties of powders, such as the specific type of surface exposed when powders are subjected to processes such as milling.
High-precision AuNPs can provide more focused optical absorption, better-targeted drug delivery, higher yield and efficiency in chemical reactions, and more reliable performance. However, the precision control of the nanoparticles has presented a major challenge. This work investigated and discussed the major process parameters of AuNPs synthesis using the Turkevich method. The authors provided detailed characterization and explanations to the correlations between the processing parameters and the nanoparticle properties. The additional knowledge would facilitate larger-scale synthesis of precision gold nanoparticles, encourage broader applications and provide insight into the synthesis and study of other engineered nanomaterials.