Magnetic Resonance in Medical Sciences
Online ISSN : 1880-2206
Print ISSN : 1347-3182
ISSN-L : 1347-3182
早期公開論文
早期公開論文の42件中1~42を表示しています
  • Shinji Naganawa, Rintaro Ito, Mariko Kawamura, Toshiaki Taoka, Tadao Y ...
    論文ID: mp.2024-0011
    発行日: 2024年
    [早期公開] 公開日: 2024/04/03
    ジャーナル オープンアクセス 早期公開

    Purpose: The endolymph of the inner ear, vital for balance and hearing, has long been considered impermeable to intravenously administered gadolinium-based contrast agents (GBCAs) due to the tight blood-endolymph barrier. However, anecdotal observations suggested potential GBCA entry in delayed heavily T2-weighted 3D-real inversion recovery (IR) MRI scans. This study systematically investigated GBCA distribution in the endolymph using this 3D-real IR sequence.

    Methods: Forty-one patients suspected of endolymphatic hydrops (EHs) underwent pre-contrast, 4-h, and 24-h post-contrast 3D-real IR imaging. Signal intensity in cerebrospinal fluid (CSF), perilymph, and endolymph was measured and analyzed for temporal dynamics of GBCA uptake, correlations between compartments, and the influence of age and presence of EH.

    Results: Endolymph showed a delayed peak GBCA uptake at 24h, contrasting with peaks in perilymph and CSF at 4h. Weak to moderate positive correlations between endolymph and CSF contrast effect were observed at both 4 (r = 0.483) and 24h (r = 0.585), suggesting possible inter-compartmental interactions. Neither the presence of EH nor age significantly influenced endolymph enhancement. However, both perilymph and CSF contrast effects significantly correlated with age at both time points.

    Conclusion: This study provides the first in vivo systematic confirmation of GBCA entering the endolymph following intravenous administration. Notably, endolymph uptake peaked at 24h, significantly later than perilymph and CSF. The lack of a link between endolymph contrast and both perilymph and age suggests distinct uptake mechanisms. These findings shed light on inner ear fluid dynamics and their potential implications in Ménière’s disease and other inner ear disorders.

  • Toshiaki Taoka, Rintaro Ito, Rei Nakamichi, Toshiki Nakane, Hisashi Ka ...
    論文ID: rev.2023-0175
    発行日: 2024年
    [早期公開] 公開日: 2024/04/02
    ジャーナル オープンアクセス 早期公開

    More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.

    The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term “ALPS-index” has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as “decreased ALPS-index” and not directly as “glymphatic dysfunction”. Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.

  • Satoru Aono, Satonori Tsuneta, Noriko Nishioka, Takuya Aoike, Hiroyuki ...
    論文ID: mp.2023-0011
    発行日: 2024年
    [早期公開] 公開日: 2024/03/29
    ジャーナル オープンアクセス 早期公開

    Purpose: Prolonged scanning of time-resolved 3D phase-contrast MRI (4D flow MRI) limits its routine use in clinical practice. An echo-planar imaging (EPI)-based sequence and compressed sensing can reduce the scan duration. We aimed to determine the impact of EPI for 4D flow MRI on the scan duration, image quality, and quantitative flow metrics.

    Methods: This was a prospective study of 15 healthy volunteers (all male, mean age 33 ± 5 years). Conventional sensitivity encoding (SENSE), EPI with SENSE (EPI), and compressed SENSE (CS) (reduction factors: 6 and 12, respectively) were scanned.

    Scan duration, qualitative indexes of image quality, and quantitative flow parameters of net flow volume, maximum flow velocity, wall shear stress (WSS), and energy loss (EL) in the ascending aorta were assessed. Two-dimensional phase-contrast cine MRI (2D-PC) was considered the gold standard of net flow volume and maximum flow velocity.

    Results: Compared to SENSE, EPI and CS12 shortened scan durations by 71% and 73% (EPI, 4 min 39 sec; CS6, 7 min 29 sec; CS12, 4 min 14 sec; and SENSE, 15 min 51 sec). Visual image quality was significantly better for EPI than for SENSE and CS (P < 0.001). The net flow volumes obtained with SENSE, EPI, and CS12 and those obtained with 2D-PC were correlated well (r = 0.950, 0.871, and 0.850, respectively). However, the maximum velocity obtained with EPI was significantly underestimated (P < 0.010). The average WSS was significantly higher with EPI than with SENSE, CS6, and CS12 (P < 0.001, P = 0.040, and P = 0.012, respectively). The EL was significantly lower with EPI than with CS6 and CS12 (P = 0.002 and P = 0.007, respectively).

    Conclusion: EPI reduced the scan duration, improved visual image quality, and was associated with more accurate net flow volume than CS. However, the flow velocity, WSS, and EL values obtained with EPI and other sequences may not be directly comparable.

  • Ryozo Kai, Mitsuhiro Tozaki, Yuya Koike, Aya Nagata, Kanae Taruno, Yos ...
    論文ID: mp.2023-0065
    発行日: 2024年
    [早期公開] 公開日: 2024/03/22
    ジャーナル オープンアクセス 早期公開

    Purpose: To investigate the characteristics of suspicious MRI-only visible lesions and to explore the validity of subcategorizing these lesions into the following two groups: lesions that would require immediate biopsy (4Bi) and lesions for which careful clinical follow-up could be recommended (4Fo).

    Methods: A retrospective review of 108 MRI-only visible lesions in 106 patients who were diagnosed as Breast Imaging Reporting and Data System (BI-RADS) category 4 between June 2018 and June 2022 at our institution was performed by two radiologists. The breast MR images were evaluated according to BI-RADS and additional MRI descriptors (linear ductal, branching, and apparent diffusion coefficient values). The lesions were categorized by previously reported classification systems, and the positive predictive values (PPVs) for the different categories were determined and compared. Subsequently, a new classification system was developed in this study.

    Results: The total malignancy rate was 31% (34/108). No significant differences between benign and malignant lesions were identified for focus and mass lesions. For non-mass lesions, linear ductal and heterogeneous internal enhancement suggested a benign lesion (P = 0.0013 and P = 0.023, respectively), and branching internal enhancement suggested malignancy (P = 0.0066). Segmental distribution suggested malignancy (P = 0.0097). However, the PPV of segmental distribution with heterogeneous enhancement was significantly lower than that of category 4 segmental lesions with other enhancement patterns (11% vs. 59%; P = 0.0198).

    As a new classification, the distribution of focal, linear, and segmental was given a score of 0, 1, or 2, and the internal enhancement of heterogeneous, linear-ductal, clumped, branching, and clustered-ring enhancement was given a score of 0, 1, 2, 3, and 4, respectively. When categorized using a scoring system, a statistically significant difference in PPV was observed between 4Fo (n = 27) and 4Bi (n = 33) (7% vs. 61%, P = 0.000029).

    Conclusion: The new classification system was found to be highly capable of subcategorizing BI-RADS category 4 MRI-only visible non-mass lesions into 4Fo and 4Bi.

  • Noriko Nishioka, Yukie Shimizu, Toru Shirai, Hisaaki Ochi, Yoshitaka B ...
    論文ID: mp.2023-0146
    発行日: 2024年
    [早期公開] 公開日: 2024/03/15
    ジャーナル オープンアクセス 早期公開
    電子付録

    Purpose: We present a novel algorithm for the automated detection of cerebral microbleeds (CMBs) on 2D gradient-recalled echo T2* weighted images (T2*WIs). This approach combines a morphology filter bank with a convolutional neural network (CNN) to improve the efficiency of CMB detection. A technical evaluation was performed to ascertain the algorithm’s accuracy.

    Methods: In this retrospective study, 60 patients with CMBs on T2*WIs were included. The gold standard was set by three neuroradiologists based on the Microbleed Anatomic Rating Scale guidelines. Images with CMBs were extracted from the training dataset comprising 30 cases using a morphology filter bank, and false positives (FPs) were removed based on the threshold of size and signal intensity. The extracted images were used to train the CNN (Vgg16). To determine the effectiveness of the morphology filter bank, the outcomes of the following two methods for detecting CMBs from the 30-case test dataset were compared: (a) employing the morphology filter bank and additional FP removal and (b) comprehensive detection without filters. The trained CNN processed both sets of initial CMB candidates, and the final CMB candidates were compared with the gold standard. The sensitivity and FPs per patient of both methods were compared.

    Results: After CNN processing, the morphology-filter-bank-based method had a 95.0% sensitivity with 4.37 FPs per patient. In contrast, the comprehensive method had a 97.5% sensitivity with 25.87 FPs per patient.

    Conclusion: Through effective CMB candidate refinement with a morphology filter bank and FP removal with a CNN, we achieved a high CMB detection rate and low FP count. Combining a CNN and morphology filter bank may facilitate the accurate automated detection of CMBs on T2*WIs.

  • Hiroyuki Kameda, Yumi Nakada, Yuta Urushibata, Hiroyuki Sugimori, Taka ...
    論文ID: tn.2023-0152
    発行日: 2024年
    [早期公開] 公開日: 2024/03/15
    ジャーナル オープンアクセス 早期公開

    17O-labeled water is a T2-shortening contrast agent used in proton MRI and is a promising method for visualizing cerebrospinal fluid (CSF) dynamics because it provides long-term tracking of water molecules. However, various external factors reduce the accuracy of 17O-concentration measurements using conventional signal-intensity-based methods. In addition, T2 mapping, which is expected to provide a stable assessment, is generally limited to temporal–spatial resolution. We developed the T2-prepared based on T2 mapping used in cardiac imaging to adapt to long T2 values and tested whether it could accurately measure 17O-concentration in the CSF using a phantom. The results showed that 17O-concentration in a fluid mimicking CSF could be evaluated with an accuracy comparable to conventional T2-mapping (Carr–Purcell–Meiboom–Gill multi-echo spin-echo method). This method allows 17O-imaging with a high temporal resolution and stability in proton MRI. This imaging technique may be promising for visualizing CSF dynamics using 17O-labeled water.

  • Jan Valošek, Julien Cohen-Adad
    論文ID: rev.2023-0159
    発行日: 2024年
    [早期公開] 公開日: 2024/03/12
    ジャーナル オープンアクセス 早期公開

    The spinal cord plays a pivotal role in the central nervous system, providing communication between the brain and the body and containing critical motor and sensory networks. Recent advancements in spinal cord MRI data acquisition and image analysis have shown a potential to improve the diagnostics, prognosis, and management of a variety of pathological conditions. In this review, we first discuss the significance of standardized spinal cord MRI acquisition protocol in multi-center and multi-manufacturer studies. Then, we cover open-access spinal cord MRI datasets, which are important for reproducible science and validation of new methods. Finally, we elaborate on the recent advances in spinal cord MRI data analysis techniques implemented in the open-source software package Spinal Cord Toolbox (SCT).

  • Hiroki Tanaka, Sho Koyasu, Masahiro Kikuchi, Mami Iima, Koichi Omori, ...
    論文ID: mp.2023-0137
    発行日: 2024年
    [早期公開] 公開日: 2024/03/07
    ジャーナル オープンアクセス 早期公開
    電子付録

    Purpose: The 8th edition of the American Joint Committee on Cancer staging system included the depth of invasion (DOI) for the T classification of oral cancer. However, no standardized method has been established to clinically measure the DOI. This study aimed to investigate the accuracy of MRI-based DOI for oral tongue squamous cell carcinoma (OTSCC) in each MRI sequence.

    Methods: We enrolled 49 patients with histologically proven OTSCC, treated surgically between April 2017 and February 2021. We divided the DOI into three groups using 5 and 10 mm, the thresholds for determining the T stage, and retrospectively evaluated the agreement between MRI-based DOI and pathological DOI (pDOI) for each MRI sequence, axial T1-weighted imaging (T1WI), T2-weighted imaging with fat suppression (FS-T2WI), contrast-enhanced T1WI with fat suppression (CE-T1WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps. We also divided the DOI into two groups using 3 mm, the threshold for considering elective neck dissection, and evaluated the overestimation rate of MRI-based DOI in lesions with pDOI ≤ 3 mm.

    Results: With 5-mm and 10-mm divisions, the accuracy of the DOI assessment was highest on DWI (0.82, weighted kappa = 0.85). With a 3-mm division, the accuracy was also highest on DWI (0.87, kappa = 0.73). The overestimation rate of the MRI-based DOI in lesions with pDOI ≤ 3 mm was lowest on DWI (27.8%).

    Conclusion: DOI on DWI exhibits a comparatively higher rate of concordance with pDOI. DWI may be more useful than other MRI sequences in evaluating the DOI of OTSCC.

  • Atsushi Higaki, Akira Yamamoto, Toshimasa Okada, Tomio Ueno, Yasuyuki ...
    論文ID: ici.2023-0161
    発行日: 2024年
    [早期公開] 公開日: 2024/02/29
    ジャーナル オープンアクセス 早期公開
    電子付録

    A woman in her sixties with portosystemic shunt and hepatic encephalopathy underwent open mesenteric vein ligation, resulting in improved portal flow and blood ammonia. In this case, 4D flow MRI was a valuable diagnostic and follow-up tool, visualizing and quantifying physiological portal hemodynamics with features distinct from those of contrast-enhanced CT and digital subtraction angiography. Our case study highlights the value of 4D flow MRI for managing portosystemic shunts.

  • Toru Shirai, Yasuhiko Terada, Katsumi Kose, Shigehito Yamada
    論文ID: tn.2023-0149
    発行日: 2024年
    [早期公開] 公開日: 2024/02/27
    ジャーナル オープンアクセス 早期公開

    A chemically fixed Carnegie stage 23 (approximately 56 days of gestation) human embryo specimen was imaged using 3D spin-echo and gradient-echo sequences in a static magnetic field strength of 4.74T, and a quantitative susceptibility map was calculated using the 3D gradient-echo image. The acquired 3D microscopic images (90 μm cube voxel size) clarified the relationship between R2 (transverse relaxation rate), R2* (apparent transverse relaxation rate), and magnetic susceptibility in the heart, liver, kidney, and spinal cord. The results suggested that the R2* and magnetic susceptibility in each tissue were probably due to paramagnetic iron ions originating from erythrocytes. The large R2* (~130 s-1) and magnetic susceptibility (~0.122 ppm) in the liver were attributed to its hemopoietic function. A large magnetic susceptibility (~0.116 ppm) was also observed in the spinal cord, but we conclude that more detailed future studies are needed.

  • Midori Kusama, Yukio Kimura, Masami Yoneyama, Takashi Namiki, Takeshi ...
    論文ID: mp.2023-0095
    発行日: 2024年
    [早期公開] 公開日: 2024/02/21
    ジャーナル オープンアクセス 早期公開

    Purpose: Neuromelanin is visualized by optimizing the conditions of longitudinal relaxation (T1)-weighted imaging (T1WI). Although it was originally developed in 2D imaging, 3D imaging has been also reported, and T1WI sequences with magnetization transfer (MT) pulses are now widely used in 3D gradient echo (GRE) sequences. In this study, we assert that the use of spectral presaturation with inversion recovery (SPIR) may also be useful as an alternative to MT pulses, and we optimize SPIR and compare it with MT.

    Methods: Neuromelanin images with MT pulse and SPIR (flip angles [FAs] = 19º, 22º, and 25º) were acquired from 30 healthy volunteers. To achieve the same acquisition time of 5 min, the slab thickness of the MT images was less than 1/3 of those of the SPIR images; the acquisition areas for MT and SPIR were the brainstem and the whole brain, respectively. Visual and quantitative evaluation was performed and compared on the four sequences acquired for the substantia nigra pars compacta (SNc) and the locus coeruleus (LC). For visual assessment, we used the mean score from a 3-point scale by two evaluators. For quantitative evaluation, the contrast ratios of SNc and LC were calculated in comparison with the background tissue signal.

    Results: In visual assessments, the mean scores of the SPIR FA19º and FA22º images were better than others in the SNc. Regarding LC, the SPIR FA22º image yielded the best mean score. In quantitative evaluations, the MT image was significantly lower than the other three images in SNc. Regarding LC, there were no significant differences among the four acquired images (MT and SPIR FA19º, FA22º, and FA25º).

    Conclusions: Detection of neuromelanin in SNc and LC was improved by the use of SPIR compared to MT pulse in 3D neuromelanin imaging.

  • Kazuki Kunieda, Kazuyuki Makihara, Shigehito Yamada, Masayuki Yamaguch ...
    論文ID: mp.2023-0110
    発行日: 2024年
    [早期公開] 公開日: 2024/02/16
    ジャーナル オープンアクセス 早期公開

    Purpose: To delineate brain microstructures in human embryos during the formation of the various major primordia by MR microscopy, with different contrasts appropriate for each target.

    Methods: We focused mainly on the internal structures in the cerebral cortex and the accessory nerves of the brain. To find appropriate sequence parameters, we measured nuclear magnetic resonance (NMR) parameters and created kernel density plots of T1 and T2 values. We performed T1-weighted gradient echo imaging with parameters similar to those used in the previous studies. We performed T2*-weighted gradient echo imaging to delineate the target structures with the appropriate sequence parameters according to the NMR parameter and flip angle measurements. We also performed high-resolution imaging with both T1- and T2*-weighted sequences.

    Results: T1, T2, and T2* values of the target tissues were positively correlated and shorter than those of the surrounding tissues. In T1-weighted images with a voxel size of (30 µm)3 and (20 µm)3, various organs and tissues and the agarose gel were differentiated as in previous studies, and the structure of approximately 40 µm in size was depicted, but the detailed structures within the cerebral cortex and the accessory nerves were not delineated. In T2*-weighted images with a voxel size of (30 µm)3, the layered structure within the cerebral cortex and the accessory nerves were clearly visualized. Overall, T1-weighted images provided more information than T2*-weighted images, but important internal brain structures of interest were visible only in T2*-weighted images. Therefore, it is essential to perform MR microscopy with different contrasts.

    Conclusion: We have visualized brain structures in a human embryo that had not previously been delineated by MR microscopy. We discussed pulse sequences appropriate for the structures of interest. This methodology would provide a way to visualize crucial embryological information about the anatomical structure of human embryos.

  • Koichi Ito, Kazuyuki Ohgi, Koichiro Kimura, Koichi Ishitaki, Akiyoshi ...
    論文ID: mp.2023-0114
    発行日: 2024年
    [早期公開] 公開日: 2024/02/16
    ジャーナル オープンアクセス 早期公開

    Purpose: The kidney iron deposition can cause kidney damage and renal insufficiency in paroxysmal nocturnal hemoglobinuria (PNH) patients. Assessment of iron deposition in the kidney is essential for the early diagnosis of renal damage in PNH patients. The purpose of this study was to evaluate kidney R2* (T2* reciprocals) values in PNH patients using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ).

    Methods: Two radiologists measured the R2* values of the renal cortex in 14 PNH patients and 13 healthy volunteers using IDEAL-IQ. Lactate dehydrogenase (LDH), a reliable marker of intravascular hemolysis, was also measured in all participants.

    Results: The kidney R2* values were significantly higher in PNH patients compared with those in healthy volunteers (P < 0.001). High inter-operator reproducibility of the measurements was also acquired using IDEAL-IQ. LDH levels were also significantly higher in PNH patients compared with those in healthy volunteers (P < 0.001). Kidney R2* values strongly correlated with LDH levels in PNH patients.

    Conclusion: IDEAL-IQ has a possibility of becoming a useful method for the noninvasive evaluation of renal iron overload in PNH patients.

  • Naoko Mori
    論文ID: lte.2023-0173
    発行日: 2024年
    [早期公開] 公開日: 2024/02/14
    ジャーナル オープンアクセス 早期公開
  • Shunrou Fujiwara, Kuniaki Ogasawara, Kohei Chida, Yasushi Ogasawara, J ...
    論文ID: mp.2022-0152
    発行日: 2024年
    [早期公開] 公開日: 2024/02/14
    ジャーナル オープンアクセス 早期公開
    電子付録

    Purpose: The present study aimed to investigate whether diffusion-weighted imaging (DWI) can qualify and quantify cerebrospinal fluid (CSF) dynamics in the brains of healthy subjects. For this purpose, we developed new DWI-based fluidography and compared the CSF dynamics seen on the fluidography with two apparent diffusion coefficients obtained with different DWI signal models at anatomical spaces filled by CSF.

    Methods: DWI with multiple b values was performed for 10 subjects using a 7T MRI scanner. DWI-fluidography based on the DWI signal variations in different motion probing gradient directions was developed for visualizing the CSF dynamics voxel-by-voxel. DWI signals were measured using an ROI in the representative CSF-filled anatomical spaces in the brain. For the multiple DWI signals, the mono-exponential and kurtosis models were fitted and two kinds of apparent diffusion coefficients (ADCC and ADCK) were estimated in each space using the Gaussian and non-Gaussian diffusion models, respectively.

    Results: DWI-fluidography could qualitatively represent the features of CSF dynamics in each anatomical space. ADCs indicated that the motions at the foramen of Monro, the cistern of the velum interpositum, the quadrigeminal cistern, the Sylvian cisterns, and the fourth ventricle were more drastic than those at the subarachnoid space and anterior horns of the lateral ventricle. Those results seen in ADCs were identical to the findings on DWI-fluidography.

    Conclusion: DWI-fluidography based on the features of DWI signals could show differences of CSF dynamics among anatomical spaces.

  • Md Shahadat Hossain Akram, Masaki Fukunaga, Fumihiko Nishikido, Sodai ...
    論文ID: mp.2023-0061
    発行日: 2024年
    [早期公開] 公開日: 2024/02/09
    ジャーナル オープンアクセス 早期公開

    Purpose: The purpose of this study was to do a feasibility study on a microstrip transmission line (MS) RF coil for a positron emission tomography (PET) insert in a 7 Tesla human MRI system. The proposed MS coil integrated the RF shield of the PET detector as the ground conductor of the coil. We called the integrated module “MS PET coil.”

    Methods: A single-channel MS PET coil was developed with an integrated RF-shielded PET detector module. For comparison, we also studied a conventional MS coil with a single-layer ground conductor. A lutetium fine silicate (LFS) scintillation crystal block (14 × 14 × 4-layer) with a silicon photomultiplier (Hamamatsu Photonics K.K., Shizuoka, Japan) and a front-end readout circuit board were mounted inside the shield cage of the MS PET coil. The MS PET coil was studied with and without PET detectors. All three coil configurations were studied with a homogeneous phantom in a 7T MRI system (Siemens Healthineers, Erlangen, Germany). PET data measurements were conducted using a Cesium-137 radiation point source.

    Results: The MR images were similar for the MS coil and the empty MS PET coil, as well as for the cases of MS PET coil with and without PET measurements. Compared to the empty MS PET coil (without PET detector and cable RF shield), decreases in SNR, increases in image noise and RF power, and a slight decrease in resonance frequency were seen for the case of the MS PET coil with the detector and cable shield. Differences in the PET energy histograms or in the crystal identification maps with and without MRI measurements were negligible.

    Conclusions: Both the MRI and PET performances of the MS PET coil showed responses that matched the MS coil responses. The performance variations of MRI data with and without PET measurement and PET data with and without MR imaging were negligible.

  • Natsumi Hirano Tani, Yuki Koreeda, Aya Nawata, Akitaka Fujisaki, Yoshi ...
    論文ID: mp.2023-0127
    発行日: 2024年
    [早期公開] 公開日: 2024/02/07
    ジャーナル オープンアクセス 早期公開

    Purpose: Adipocytes around aggressive breast cancer (BC) are less lipid different from naive adipocytes (cancer-associated adipocytes, CAAs), and peritumoral edema caused by the release of cytokines from CAAs can conduce to decrease the peritumoral fat proportion. The purpose of this study was to correlate peritumoral fat content identified by using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with lymph node metastasis (LNM) and recurrence-free survival (RFS) in BC patients and to compare with T2-weighted (T2WI) and diffusion-weighted images (DWI) analyses.

    Methods: This retrospective study consisted of 85 patients who were diagnosed with invasive carcinoma of breast and underwent breast MRI, including IDEAL before surgery. The scan time of fat fraction (FF) map imaging using IDEAL was 33s. Four regions of interest (ROIs), which are 5 mm from the tumor edge, and one ROI in the mammary fat of the healthy side were set on the FF map. Then average peritumoral FF values (TFF), average FF values on the healthy side (HFF), and peritumoral fat ratio (PTFR, which is defined as TFF/HFF) were calculated. Tumor apparent diffusion coefficient (ADC) values were measured on ADC map obtained by DWI. Peritumoral edema was classified into three grades based on the degree of signal intensity around the tumor on T2WI (T2 edema).

    Results: The results of stepwise logistic regression analysis for four variables (TFF, PTFR, T2 edema, and ADC value) indicated that TFF and T2 edema were significant factors of LNM (p < 0.01). RFS was significantly associated with TFF (p = 0.016), and 47 of 49 (95.9%) patients with TFF more than 85.5% were alive without recurrence.

    Conclusion: Peritumoral fat content identified by using IDEAL is associated with LNM and RFS and may therefore be a useful prognostic biomarker for BC.

  • Noriko Kanemaru, Takeharu Yoshikawa, Soichiro Miki, Takahiro Nakao, Yu ...
    論文ID: mp.2023-0147
    発行日: 2024年
    [早期公開] 公開日: 2024/02/07
    ジャーナル オープンアクセス 早期公開

    Purpose: The purpose of this study was to investigate the longitudinal MRI characteristic of COVID-19-vaccination-related axillary lymphadenopathy by evaluating the size, T2-weighted signal intensity, and apparent diffusion coefficient (ADC) values.

    Methods: COVID-19-vaccination-related axillary lymphadenopathy was observed in 90 of 433 health screening program participants on the chest region of whole-body axial MRIs in 2021, as reported in our previous study. Follow-up MRI was performed at an interval of approximately 1 year after the second vaccination dose from 2022 to 2023. The diameter, signal intensity on T2-weighted images, and ADC of the largest enlarged lymph nodes were measured on chest MRI. The values were compared between the post-vaccination MRI and the follow-up MRI, and statistically analyzed.

    Results: Out of the 90 participants who had enlarged lymph nodes of 5 mm or larger in short axis after the second vaccination dose, 76 participants (45 men and 31 women, mean age: 61 years) were enrolled in the present study. The median short- and long-axis diameter of the enlarged lymph nodes was 7 mm and 9 mm for post-vaccination MRI and 4 mm and 6 mm for follow-up MRI, respectively. The median signal intensity relative to the muscle on T2-weighted images decreased (5.1 for the initial post-vaccination MRI and 3.6 for the follow-up MRI, P < .0001). The ADC values did not show a notable change and remained in a normal range.

    Conclusion: The enlarged axillary lymph nodes decreased both in size and in signal intensity on T2-weighted images of follow-up MRI. The ADC remained unchanged. Our findings may provide important information to establish evidence-based guidelines for conducting proper assessment and management of post-vaccination lymphadenopathy.

  • Takashi Nishihara, Yuko Nakamura, Nobuyuki Yoshizawa, Masahiro Takizaw ...
    論文ID: tn.2023-0104
    発行日: 2024年
    [早期公開] 公開日: 2024/02/02
    ジャーナル オープンアクセス 早期公開

    Gadoxetic acid is both an extracellular- and hepatocyte-specific contrast agent. Signals from the extracellular space may lower the contrast between lesions and the surrounding hepatic parenchyma. To improve hepatocyte-specific enhancement, we developed an intracellular contrast-enhancing fat-saturated T1-weighted gradient-echo nature of the sequence (ICE-TIGRE). It incorporates the motion-sensitized driven-equilibrium (MSDE) pulse to suppress signals from the blood flow. We investigated the optimal ICE-TIGRE scanning parameters, i.e., the order of the MSDE and the fat saturation pulses, the duration time, and the b value of the MSDE pulse, using a phantom and three volunteers without applying gadoxetic acid. ICE-TIGRE successfully increased the contrast between the liver parenchyma and the portal vein. To maintain fat saturation, the preparation pulse order should be MSDE–fat saturation. A duration time of 21 ms should be applied to minimize the effect of the T2 factor on the T1 contrast, and a b value of 60 s/mm2 should be applied to maximize the diffusion contrast for ICE-TIGRE with the imaging system used in this study.

  • Kouhei Kamiya, Sayori Hanashiro, Osamu Kano, Wataru Uchida, Koji Kamag ...
    論文ID: mp.2023-0138
    発行日: 2024年
    [早期公開] 公開日: 2024/01/30
    ジャーナル オープンアクセス 早期公開
    電子付録

    Purpose: Here, we aimed to characterize the cortical and subcortical microstructural alterations in the brains of patients with amyotrophic lateral sclerosis (ALS). In particular, we compared these features between bulbar-onset ALS (b-ALS) and limb-onset ALS (l-ALS).

    Methods: Diffusion MRI data (b = 0, 700, 2000 ms/mm2, 1.7-mm isotropic voxel) from 28 patients with ALS (9 b-ALS and 19 l-ALS) and 17 healthy control subjects (HCs) were analyzed. Diffusional kurtosis imaging (DKI) metrics were sampled at the mid-cortical and subcortical surfaces. We used permutation testing with a nonparametric combination of mean diffusivity (MD), fractional anisotropy (FA), and mean kurtosis (MK) to assess intergroup differences over the cerebrum. We also carried out an atlas-based analysis focusing on Brodmann Area 4 and 6 (primary motor and premotor areas) and investigated the correlation between MRI metrics and clinical parameters.

    Results: At both the mid-cortical and subcortical surfaces, b-ALS was associated with significantly greater MD, smaller FA, and smaller MK in the motor and premotor areas than HC. In contrast, the patients with l-ALS showed relatively moderate differences relative to HCs. The ALS Functional Rating Scale-Revised bulbar subscore was significantly correlated with the diffusion metrics in Brodmann Area 4.

    Conclusion: The distribution of abnormalities over the cerebral hemispheres and the more severe microstructural alteration in b-ALS compared to l-ALS were in good agreement with findings from postmortem histology. Our results suggest the feasibility of surface-based DKI analyses for exploring brain microstructural pathologies in ALS. The observed differences between b-ALS and l-ALS and their correlations with functional bulbar impairment support the clinical relevance of DKI measurement in the cortical and juxtacortical regions of patients with ALS.

  • Tsutomu Inaoka, Masayuki Sugeta, Tomoya Nakatsuka, Shusuke Kasuya, Rum ...
    論文ID: mp.2023-0028
    発行日: 2024年
    [早期公開] 公開日: 2024/01/16
    ジャーナル オープンアクセス 早期公開

    Purpose: To evaluate the significant findings of hip periprosthetic joint infection (PJI) using metal-artifact-reduction (MAR) MRI and to compare the MRI results to other clinical markers.

    Methods: The results of MRI, including two-dimensional fast-spin echo sequences with increased bandwidth and multi-acquisition variable-resonance image combination selective for hips with orthopedic implants at 1.5T (from April 2014 to November 2021), were retrospectively assessed for imaging findings and diagnostic impressions by two radiologists. Clinical data and courses were also investigated. Univariate and multivariate analyses were performed to identify the significant MRI findings in patients with hip PJI and those who underwent surgical intervention. The MRI impressions were compared with other clinical markers in diagnosing hip PJI.

    Results: Thirty-seven hip joints in 24 Asian patients (age = 73.9 ± 10.8 years; 18 females) were included. Twelve hip joints (32%) had PJI; seven underwent a surgical intervention. The significant findings for hip PJI included periosteal edema of the acetabulum, intermuscular edema, intramuscular fluid collection, and lymphadenopathy (P < 0.05). In the cases with surgical intervention, the significant findings included capsular distension, capsular thickening, an osteolysis-like pattern of the femur, subcutaneous fluid collection, and lymphadenopathy (P < 0.05). The MRI impressions had high diagnostic significance for both hip PJI cases and those with surgical intervention (P < 0.001). The MRI impression was more significant for hip PJI than the other clinical markers (P < 0.05), while the other clinical markers were more significant in the cases with surgical intervention (P < 0.05).

    Conclusion: The significant findings in the hip PJI cases included acetabular periosteal edema, intermuscular edema, intramuscular fluid collection, and lymphadenopathy. The significant findings in the cases with surgical intervention included capsular distention, capsular thickening, a femoral osteolysis-like pattern, subcutaneous fluid collection, and lymphadenopathy. The utilization of MAR MRI demonstrated great diagnostic significance for hip PJI.

  • Shohei Inui, Daita Kaneda, Keita Sakurai, Yuto Uchida, Osamu Abe, Yosh ...
    論文ID: mp.2023-0093
    発行日: 2024年
    [早期公開] 公開日: 2024/01/16
    ジャーナル オープンアクセス 早期公開

    Purpose: Magnetization prepared rapid acquisition with gradient echo (MPRAGE) sequence is a gold-standard technique for voxel-based morphometry (VBM) because of high spatial resolution and excellent tissue contrast, especially between gray matter (GM) and white matter (WM). Despite its benefits, MPRAGE exhibits distinct challenge for VBM in some patients with neurological disease because of long scan time and motion artifacts. Speedily acquired localizer images may alleviate this problem. This study aimed to evaluate the feasibility of VBM using 3D Fast Low Angle Shot image captured for localizer (L3DFLASH).

    Methods: Consecutive 13 patients with pathologically confirmed Alzheimer’s disease (AD) (82 ± 9 years) and 21 healthy controls (HC) (79 ± 4 years) were included in this study. Whole-brain L3DFLASH and MPRAGE were captured and preprocessed using the Computational Anatomy Toolbox 12 (CAT12). Agreement with MPRAGE was evaluated for L3DFLASH using regional normalized volume for segmented brain areas. In addition to brain volume difference on VBM and Bland-Altman analysis, atrophic pattern of AD on VBM was evaluated using L3DFLASH and MPRAGE.

    Results: Acquisition time was 18 s for L3DFLASH and 288 s for MPRAGE. There was a slight systematic difference in all regional normalized volumes from L3DFLASH and MPRAGE. For the whole cohort, GM volume measured from MPRAGE was greater than that from L3DFLASH in most of the region on VBM. When AD and HC were compared, AD-related atrophic pattern was demonstrated in both L3DFLASH and MPRAGE on VBM, although the difference was noted in significant clusters between them.

    Conclusion: Although systematic difference was noted in regional brain volume measured from L3DFLASH and MPRAGE, AD-related atrophic pattern was preserved in L3DFLASH on VBM. VBM, using speedily acquired localizer image, may provide limited but useful information for evaluating brain atrophy.

  • Shunsuke Tajima, Haruo Isoda, Masaki Fukunaga, Yoshiaki Komori, Shinji ...
    論文ID: mp.2023-0016
    発行日: 2023年
    [早期公開] 公開日: 2023/12/20
    ジャーナル オープンアクセス 早期公開

    Purpose: Hemodynamics is important in the initiation, growth, and rupture of intracranial aneurysms. Since intracranial aneurysms are small, a high-field MR system with high spatial resolution and high SNR is desirable for this hemodynamic analysis. The purpose of this study was to investigate whether the accuracy of MR fluid dynamic (MRFD) results based on 3D phase-contrast MR (3D PC MR, non-electrocardiogram[ECG]-gated 4D Flow MRI) data from a human cerebrovascular phantom and human healthy subjects obtained by a 7T MR system was superior to those by a 3T MR system.

    Methods: 3D PC MR and 3D time of flight MR angiography (3D TOF MRA) imaging were performed on a 3T MR system and a 7T MR system for a human cerebrovascular phantom and 10 healthy human subjects, and MRFD analysis was performed using these data. The MRFD results from each MR system were then compared with the following items based on the computational fluid dynamics (CFD) results: 3D velocity vector field; correlation coefficient (R), angular similarity index (ASI), and magnitude similarity index (MSI) of blood flow velocity vectors.

    Results: In the MRFD results of 3D velocity vectors of the cerebrovascular phantom, noise-like vectors were observed near the vascular wall on the 3T MR system, but no noise was observed on the 7T MR system, showing results similar to those of CFD. In the MRFD results of the cerebrovascular phantom and healthy subjects, the correlation coefficients R, ASI, and MSI of the 7T MR system were higher than those of the 3T MR system, and ASI and MSI of healthy human subjects were significantly different between the two systems.

    Conclusions: The accuracy of high spatial resolution MRFD using the 7T MR system exceeded that of the 3T MR system.

  • Wei Mao, Yuqin Ding, Xiaoqiang Ding, Caixia Fu, Bohong Cao, Dominik Ni ...
    論文ID: mp.2023-0027
    発行日: 2023年
    [早期公開] 公開日: 2023/12/22
    ジャーナル オープンアクセス 早期公開

    Purpose: The objective of this study was to evaluate renal function and pathologic injury in chronic kidney disease (CKD) using T1 mapping.

    Methods: We recruited fifteen healthy volunteers (HV) and seventy-five CKD patients to undergo T1 mapping examination, and renal parenchymal T1 values were measured. Spearman correlation analysis was used to evaluate the relevance between the pathologic injury score, estimated glomerular filtration rate (eGFR), and renal parenchymal T1 values. The diagnostic efficiency of T1 value in evaluating renal pathologic impairment was assessed.

    Results: In all subjects, renal cortical T1 value was remarkably lower than renal medullary T1 value (P < 0.01). The renal medullary T1 value of HV was considerably lower than that of CKD patients in all stages (P < 0.05). The T1 values were negatively correlated with eGFR (cortex, r = –0.718; medulla, r = –0.645). The T1 values were positively correlated with glomerular injury score (cortex, r = 0.692; medulla, r = 0.632), tubulointerstitial injury score (cortex, r = 0.758; medulla, r = 0.690) (all P < 0.01). The area under the curve (AUC) of renal cortical and medullary T1 values were 0.914 and 0.880 to distinguish moderate–severe from mild renal injury groups. To differentiate mild renal injury group from control group, the AUC values of renal cortical and medullary T1 values were 0.879 and 0.856.

    Conclusion: T1 mapping has potential application value in non-invasively assessing renal pathologic injury in CKD.

  • Shinji Naganawa, Rintaro Ito, Mariko Kawamura, Toshiaki Taoka
    論文ID: bc.2023-0122
    発行日: 2023年
    [早期公開] 公開日: 2023/11/10
    ジャーナル オープンアクセス 早期公開

    Postsurgery intracranial air usually diminishes, presumably merging with cerebrospinal fluid (CSF) and venous circulation. Our study presents two transsphenoidal surgery cases, highlighting potential air absorption by arachnoid granulation (AG)—an underexplored phenomenon. AG has long been deemed pivotal for CSF absorption, but recent perspectives suggest a significant role in waste clearance, neuroinflammation, and neuroimmunity. These cases may stimulate renewed research on the multifaceted role of AG in neurofluid dynamics and potentially elucidate further AG functions.

  • Hitomi Numamoto, Koji Fujimoto, Kanae Kawai Miyake, Yasutaka Fushimi, ...
    論文ID: mp.2023-0102
    発行日: 2023年
    [早期公開] 公開日: 2023/11/10
    ジャーナル オープンアクセス 早期公開
    電子付録

    Purpose: To compare image distortion and reproducibility of quantitative values between reverse encoding distortion correction (RDC) diffusion-weighted imaging (DWI) and conventional DWI techniques in a phantom study and in healthy volunteers.

    Methods: This prospective study was conducted with the approval of our institutional review board. Written informed consent was obtained from each participant. RDC-DWIs were created from images obtained at 3T in three orthogonal directions in a phantom and in 10 participants (mean age, 70.9 years; age range, 63–83 years). Images without distortion correction (noDC-DWI) and those corrected with B0 (B0c-DWI) were also created. To evaluate distortion, coefficients of variation were calculated for each voxel and ROIs were placed at four levels of the brain. To evaluate the reproducibility of apparent diffusion coefficient (ADC) measurements, intra- and inter-scan variability (%CVADC) were calculated from repeated scans of the phantom. Analysis was performed using Wilcoxon signed-rank test with Bonferroni correction, and P < 0.05 was considered statistically significant.

    Results: In the phantom, distortion was less in RDC-DWI than in B0c-DWI (P < 0.006), and was less in B0c-DWI than in noDC-DWI (P < 0.006). Intra-scan %CVADC was within 1.30%, and inter-scan %CVADC was within 2.99%. In the volunteers, distortion was less in RDC-DWI than in B0c-DWI in three of four locations (P < 0.006), and was less in B0c-DWI than in noDC-DWI (P < 0.006). At the middle cerebellar peduncle, distortion was less in RDC-DWI than in noDC-DWI (P < 0.006), and was less in noDC-DWI than in B0c-DWI (P < 0.0177).

    Conclusion: In both the phantom and in volunteers, distortion was the least in RDC-DWI than in B0c-DWI and noDC-DWI.

  • Nobuyasu Ichinose, Kentaro Haraoka, Takaya Mori, Masanori Ozaki, Akira ...
    論文ID: mp.2023-0074
    発行日: 2023年
    [早期公開] 公開日: 2023/11/02
    ジャーナル オープンアクセス 早期公開

    Purpose: Recently, the utility of non-contrast MR endolymphatic hydrops imaging was reported, but the pitfall was indicated based on T2 preparation pulse sensitiveness to local static magnetic field (B0) inhomogeneity. The purpose of this study is to clarify the effects of surrounding magnetic environment of temporal bone to lymphatic fluid signal intensity on the T2 preparation and fluid attenuated inversion recovery pulse combination (T2prep 3D-FLAIR) technique in human inner ear study.

    Methods: We prepared a custom-made phantom comprising a chicken leg bone submersed in saline. To evaluate signal characteristics of saline close to bone, multiple TE gradient echoes, T2 relaxation time measurement, and T2prep 3D-FLAIR image were acquired. In the vicinity of the vestibule of a healthy volunteer, similar examinations were executed. Additionally, to investigate the influence of the magnetic environment from B0, the evaluation was performed in five head position settings relative to B0.

    Results: In both the phantom case and volunteer case, together with T2 star signal intensity attenuation, T2 relaxation time shortening was observed on fluid around bone. Specifically, at the outer edge in the vestibule and cochlea of the volunteer, T2 relaxation time was shorter than that of center of vestibule and that of cochlea. In the T2prep 3D-FLAIR image, higher signal intensity was observed at the same location on the outer edge of them. These results showed that bone affects surrounding fluid magnetic environment. Also, for B0 influence, despite a large area variation ratio, there is no statistically significant difference correlated to orientation within B0.

    Conclusion: The surrounding magnetic environment of the temporal bone affects lymphatic fluid signals of the peripheral part of the human inner ear on T2prep 3D-FLAIR technique.

  • Atsushi Nakamoto, Hiromitsu Onishi, Takahiro Tsuboyama, Hideyuki Fukui ...
    論文ID: mp.2023-0039
    発行日: 2023年
    [早期公開] 公開日: 2023/10/28
    ジャーナル オープンアクセス 早期公開

    Purpose: To compare objective and subjective image quality, lesion conspicuity, and apparent diffusion coefficient (ADC) of high-resolution multiplexed sensitivity-encoding diffusion-weighted imaging (MUSE-DWI) with conventional DWI (c-DWI) and reduced FOV DWI (rFOV-DWI) in prostate MRI.

    Methods: Forty-seven patients who underwent prostate MRI, including c-DWI, rFOV-DWI, and MUSE-DWI, were retrospectively evaluated. SNR and ADC of normal prostate tissue and contrast-to-noise ratio (CNR) and ADC of prostate cancer (PCa) were measured and compared between the three sequences. Image quality and lesion conspicuity were independently graded by two radiologists using a 5-point scale and compared between the three sequences.

    Results: The SNR of normal prostate tissue was significantly higher with rFOV-DWI than with the other two DWI techniques (P ≤ 0.01). The CNR of the PCa was significantly higher with rFOV-DWI than with MUSE-DWI (P < 0.05). The ADC of normal prostate tissue measured by rFOV-DWI was lower than that measured by MUSE-DWI and c-DWI (P < 0.01), while there was no difference in the ADC of cancers. In the qualitative analysis, MUSE-DWI showed significantly higher scores than rFOV-DWI and c-DWI for visibility of anatomy and overall image quality in both readers, and significantly higher scores for distortion in one of the two readers (P < 0.001). There was no difference in lesion conspicuity between the three sequences.

    Conclusion: High-resolution MUSE-DWI showed higher image quality and reduced distortion compared to c-DWI, while maintaining a wide FOV and similar ADC quantification, although no difference in lesion conspicuity was observed.

  • Yoshitaka Bito, Hisaaki Ochi, Ryuji Shirase, Wataru Yokohama, Kuniaki ...
    論文ID: mp.2023-0081
    発行日: 2023年
    [早期公開] 公開日: 2023/10/27
    ジャーナル オープンアクセス 早期公開

    Purpose: Analysis of cerebrospinal fluid (CSF) dynamics may be beneficial for understanding the mechanisms and diagnosis of several neurological diseases. Low b-value diffusion tensor imaging (low-b DTI) is useful for observing the slow and complex motion of the CSF. Theoretically, a mathematical framework suggests that low-b DTI provides the variance of the pseudorandom motion of the CSF. Furthermore, low-b DTI could provide comprehensive information on fluid dynamics. Accordingly, we proposed an analysis technique that resolves intravoxel pseudorandom motion into ordered (linear) and disordered (random) motions based on the mathematical framework.

    Methods: The proposed analysis technique helps measure low-b DTI with multiple diffusion times and linearly fits its mean diffusivity (MD) with the diffusion time to obtain two parameters, double-slope Vv and y-intersect Dr, which represent the variance of the velocity distribution of linear motion and the diffusion coefficient of random motion, respectively. Seven healthy subjects were scanned to evaluate the proposed technique and investigate fluid dynamics in several representative ROIs.

    Results: The obtained data showed the validity of the technique, repeatability, and consistency across the subjects in ROIs, such as the lateral ventricle (LV), third ventricle (3V), fourth ventricle (4V), and Sylvian fissure (SF). The obtained parameters Vv and Dr highlighted different characteristics of fluid dynamics in the representative ROIs: low Vv and low Dr in the LV, high Vv and moderate Dr in the 3V, and moderate Vv and moderate Dr in the 4V and SF.

    Conclusion: The proposed analysis technique will facilitate a comprehensive investigation of the complex dynamics of the CSF using resolved parameters representing ordered and disordered motions.

  • Masafumi Takafuji, Masaki Ishida, Satoshi Nakamura, Kei Nakata, Haruno ...
    論文ID: mp.2023-0018
    発行日: 2023年
    [早期公開] 公開日: 2023/09/28
    ジャーナル オープンアクセス 早期公開

    Purpose: The purposes of this study were to compare global coronary flow reserve (CFR) between patients with idiopathic dilated cardiomyopathy (DCM) and risk-matched controls using cardiac MRI (CMR), and to evaluate the relationship between global CFR and CMR left ventricular (LV) parameters.

    Methods: Twenty-six patients with DCM and 26 risk-matched controls who underwent comprehensive CMR examination, including stress-rest coronary sinus flow measurement by phase contrast (PC) cine CMR were retrospectively studied. LV peak global longitudinal, radial, and circumferential strains (GLS, GRS, and GCS) were determined by feature tracking.

    Results: Patients with DCM had significantly lower global CFR compared with the risk-matched controls (2.87 ± 0.86 vs. 4.03 ± 1.47, P = 0.001). Among the parameters, univariate linear regression analyses revealed significant correlation of global CFR with LV end-diastolic volume index (r = –0.396, P = 0.045), LV mass index (r = –0.461, P = 0.018), GLS (r = –0.558, P = 0.003), and GRS (r = 0.392, P = 0.047). Multiple linear regression analysis revealed GLS as the only independent predictor of global CFR (standardized β = –0.558, P = 0.003).

    Conclusion: Global CFR was significantly impaired in patients with idiopathic DCM and independently associated with LV GLS, suggesting that microvascular dysfunction may contribute to deterioration of LV function in patients with idiopathic DCM.

  • Ryoichi Kose, Katsumi Kose, Koji Fujimoto, Tomohisa Okada, Daiki Tamad ...
    論文ID: tn.2023-0063
    発行日: 2023年
    [早期公開] 公開日: 2023/09/09
    ジャーナル オープンアクセス 早期公開

    Recent high-performance gradient coils are fabricated mainly at the expense of spatial linearity. In this study, we measured the spatial nonlinearity of the magnetic field generated by the gradient coils of two MRI systems with high-performance gradient coils. The nonlinearity of the gradient fields was measured using 3D gradient echo sequences and a spherical phantom with a built-in lattice structure. The spatial variation of the gradient field was approximated to the 3rd order polynomials. The coefficients of the polynomials were calculated using the steepest descent method. The geometric distortion of the acquired 3D MR images was corrected using the polynomials and compared with the 3D images corrected using the harmonic functions provided by the MRI venders. As a result, it was found that the nonlinearity correction formulae provided by the vendors were insufficient and needed to be verified or corrected using a geometric phantom such as used in this study.

  • Zuofeng Zheng, Yawen Liu, Hongxia Yin, Pengling Ren, Tingting Zhang, J ...
    論文ID: tn.2022-0161
    発行日: 2023年
    [早期公開] 公開日: 2023/09/08
    ジャーナル オープンアクセス 早期公開

    Synthetic MRI is being increasingly used for the quantification of brain longitudinal relaxation time (T1), transverse relaxation time (T2), and proton density (PD) values. However, the effect of fast imaging protocols on these quantitative values has not been fully estimated. The purpose of this study was to investigate the effect of fast scan parameters on T1, T2, and PD measured with a multi-dynamic multi-echo (MDME) sequence of normal brain at 3.0T. Thirty-four volunteers were scanned using 3 MDME sequences with different scan times (named Fast, 2 min, 29 sec; Routine, 4 min, 07 sec; and Research, 7 min, 46 sec, respectively). The measured T1, T2, and PD in 18 volumes of interest (VOI) of brain were compared between the 3 sequences using rank sum test, t test, coefficients of variation (CVs) analysis, correlation analysis, and Bland-Altman analysis. We found that even though T1, T2, and PD were significantly different between the 3 sequences in most of the brain regions, the intersequence CVs were relatively low and linear correlation were high. Bland-Altman plots showed that most of the values fall within the 95% prediction limits. We concluded that fast imaging protocols of MDME sequence used in our study can potentially be used for quantitative evaluation of brain tissues. Since changing scan parameters can affect the measured T1, T2, and PD values, it is necessary to use consistent scan parameter for comparing or following up cases quantitatively.

  • Yuta Endo, Sanae Takahashi, Haruna Shibo, Makoto Amanuma, Kuninori Kob ...
    論文ID: mp.2023-0029
    発行日: 2023年
    [早期公開] 公開日: 2023/09/04
    ジャーナル オープンアクセス 早期公開

    Purpose: Polarity-corrected inversion time preparation (PCTIP), a myocardial T1 mapping technique, is expected to reduce measurement underestimation in the modified Look-Locker inversion recover method. However, measurement precision is reduced, especially for heart rate variability. We devised an analysis using a recurrence formula to overcome this problem and showed that it improved the measurement accuracy, especially at high heart rates. Therefore, this study aimed to determine the effect of this analysis on the accuracy and precision of T1 measurements for irregular heart rate variability.

    Methods: A PCTIP scan using a 3T MRI scanner was performed in phantom experiment. We generated the simulated R-waves required for electrocardiogram (ECG)-gated acquisition using a signal generator set to 30 combinations. T1 map was generated using the signal train of the PCTIP images by nonlinear curve fitting using conventional and recurrence formulas. Accuracy against reference T1 and precision of heart rate variability were evaluated. To evaluate the fitting accuracy of both analyses, the relative fitting error was calculated.

    Results: For the longer T1, the fitting error was larger than the short T1, with the conventional analysis showing 10.1±2.0%. The recurrence formula analysis showed a small fitting error less than 1%, which was consistent for all heart rate variability patterns. In the conventional analysis, the accuracy, especially for longer T1, showed a large underestimation of the measurements and poor linearity. However, in the recurrence formula analysis, the accuracy improved at a long T1, and linearity also improved. The Bland–Altman plot showed that it varied greatly depending on the heart rate variability pattern for the longer T1 in the conventional analysis, whereas the recurrence formula analysis suppressed this variation.

    Conclusion: T1 analysis of PCTIP using the recurrence formula analysis achieved accurate and precise T1 measurements, even for irregular heart rate variability.

  • Daisuke Takenaka, Yoshiyuki Ozawa, Kaori Yamamoto, Maiko Shinohara, Ma ...
    分野: MAJOR PAPERS
    論文ID: mp.2023-0068
    発行日: 2023年
    [早期公開] 公開日: 2023/09/01
    ジャーナル オープンアクセス 早期公開

    Purpose: Deep learning reconstruction (DLR) has been recommended as useful for improving image quality. Moreover, compressed sensing (CS) or DLR has been proposed as useful for improving temporal resolution and image quality on MR sequences in different body fields. However, there have been no reports regarding the utility of DLR for image quality and T-factor assessment improvements on T2-weighted imaging (T2WI), short inversion time (TI) inversion recovery (STIR) imaging, and unenhanced- and contrast-enhanced (CE) 3D fast spoiled gradient echo (GRE) imaging with and without CS in comparison with thin-section multidetector-row CT (MDCT) for non-small cell lung cancer (NSCLC) patients. The purpose of this study was to determine the utility of DLR for improving image quality and the appropriate sequence for T-category assessment for NSCLC patients.

    Methods: As subjects for this study, 213 pathologically diagnosed NSCLC patients who underwent thin-section MDCT and MR imaging as well as T-factor diagnosis were retrospectively enrolled. SNR of each tumor was calculated and compared by paired t-test for each sequence with and without DLR. T-factor for each patient was assessed with thin-section MDCT and all MR sequences, and the accuracy for T-factor diagnosis was compared among all sequences and thin-section CT by means of McNemar’s test.

    Results: SNRs of T2WI, STIR imaging, unenhanced thin-section Quick 3D imaging, and CE-thin-section Quick 3D imaging with DLR were significantly higher than SNRs of those without DLR (P < 0.05). Diagnostic accuracy of STIR imaging and CE-thick- or thin-section Quick 3D imaging was significantly higher than that of thin-section CT, T2WI, and unenhanced thick- or thin-section Quick 3D imaging (P < 0.05).

    Conclusion: DLR is thus considered useful for image quality improvement on MR imaging. STIR imaging and CE-Quick 3D imaging with or without CS were validated as appropriate MR sequences for T-factor evaluation in NSCLC patients.

  • Barış Genç, Kerim Aslan, Ali Özçağlayan, Lütfi İncesu
    論文ID: mp.2023-0054
    発行日: 2023年
    [早期公開] 公開日: 2023/08/01
    ジャーナル オープンアクセス 早期公開

    Purpose: Glioblastoma patients develop recurrence in the opposite hemisphere far from the primary tumor site even after complete resection. This is one of the main reasons for short disease survival. Our aim in this study is to detect microstructural changes in the contralateral hemisphere of glioblastoma patients using different diffusion models with the fully automated tract-based spatial statistics (TBSS) method.

    Methods: Fourteen right-sided and eleven left-sided glioblastoma patients without any treatment and eighteen age- and gender-matched controls were included in the study. Multi-shell diffusion weighted images were created with a 3T MRI device. After various preprocessing steps, images of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), axial kurtosis (AK), mean kurtosis (MK), radial kurtosis (RK), intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic water fraction (ISO) were obtained. TBSS was used to compare diffusion tensor imaging, diffusion kurtosis imaging, and neurite orientation dispersion and density imaging parameters of right- and left-sided glioblastoma patients with the control group for the contralateral hemisphere.

    Results: Both right-sided and left-sided glioblastoma patients have shown an increase in MD and ODI in the contralateral hemisphere. While right-sided glioblastoma patients showed an increase in RD, AD, and ISO in a more limited area in the contralateral hemisphere, left-sided glioblastoma patients showed an increase in MK and AK. FA, ICVF, and RK did not show any difference in both groups.

    Conclusion: There are microstructural changes in the contralateral hemisphere in glioblastoma patients, and these changes differ between right-sided and left-sided glioblastoma patients.

  • Naoto Fujita, Suguru Yokosawa, Toru Shirai, Yasuhiko Terada
    論文ID: mp.2023-0031
    発行日: 2023年
    [早期公開] 公開日: 2023/07/28
    ジャーナル オープンアクセス 早期公開
    電子付録

    Purpose: Deep neural networks (DNNs) for MRI reconstruction often require large datasets for training. Still, in clinical settings, the domains of datasets are diverse, and how robust DNNs are to domain differences between training and testing datasets has been an open question. Here, we numerically and clinically evaluate the generalization of the reconstruction networks across various domains under clinically practical conditions and provide practical guidance on what points to consider when selecting models for clinical application.

    Methods: We compare the reconstruction performance between four network models: U-Net, the deep cascade of convolutional neural networks (DC-CNNs), Hybrid Cascade, and variational network (VarNet). We used the public multicoil dataset fastMRI for training and testing and performed a single-domain test, where the domains of the dataset used for training and testing were the same, and cross-domain tests, where the source and target domains were different. We conducted a single-domain test (Experiment 1) and cross-domain tests (Experiments 2–4), focusing on six factors (the number of images, sampling pattern, acceleration factor, noise level, contrast, and anatomical structure) both numerically and clinically.

    Results: U-Net had lower performance than the three model-based networks and was less robust to domain shifts between training and testing datasets. VarNet had the highest performance and robustness among the three model-based networks, followed by Hybrid Cascade and DC-CNN. Especially, VarNet showed high performance even with a limited number of training images (200 images/10 cases). U-Net was more robust to domain shifts concerning noise level than the other model-based networks. Hybrid Cascade showed slightly better performance and robustness than DC-CNN, except for robustness to noise-level domain shifts. The results of the clinical evaluations generally agreed with the results of the quantitative metrics.

    Conclusion: In this study, we numerically and clinically evaluated the robustness of the publicly available networks using the multicoil data. Therefore, this study provided practical guidance for clinical applications.

  • Hideki Hoshi, Reiji Sugita, Yoshio Machida
    論文ID: tn.2022-0132
    発行日: 2023年
    [早期公開] 公開日: 2023/06/21
    ジャーナル オープンアクセス 早期公開

    The usefulness of a highly targeted pencil beam (PB) label was compared with the commonly used slab label for direct visualization of pancreaticobiliary reflux using the time-spatial labeling inversion pulse (time-SLIP) technique. Signal profiles of flow phantom images obtained with a 1.5T MRI were analyzed. Both labels had similar labeling capabilities, but the edge characteristics of the PB label were blunt. Next, sixty-eight patients were classified into two groups according to the angle of the pancreaticobiliary ducts, and the displacement of the pancreatic ducts in respiratory fluctuation was measured. The results were approximately 7 mm in both groups. The blunt edge characteristics of the PB label suggest that it is robust to respiratory fluctuations. The overall labeling ability of the PB is comparable to that of the slab. In the larger angle of pancreaticobiliary ducts, the PB label may be able to label the pancreatic duct more selectively.

  • Naoya Kinota, Hiroyuki Kameda, Bai Xiawei, Takaaki Fujii, Daisuke Kato ...
    論文ID: mp.2023-0023
    発行日: 2023年
    [早期公開] 公開日: 2023/05/30
    ジャーナル オープンアクセス 早期公開

    Purpose: To investigate whether deep cervical lymph node (DCLN) ligation alters intracranial cerebrospinal fluid (CSF) tracer dynamics and outflow using a rat model with intrathecal dynamic contrast-enhanced (DCE) MRI.

    Methods: Six bilateral DCLN-ligated and six sham-operated rats were subjected to DCE MRI with Gd-BTDO3A, and dynamic T1-weighted images were acquired. ROIs were collected from the CSF at the C1 level (CSF_C1), CSF between the olfactory bulbs (CSF_OB), CSF at the pituitary recess (CSF_PitR), and CSF at the pineal recess (CSF_PinR), upper nasal turbinate (UNT), olfactory bulbs, cerebrum, and the jugular region. Time-intensity curves were evaluated, and the maximum slope, peak timing, peak signal ratio, and elimination half-life for the four CSF ROIs and UNT were calculated and compared.

    Results: Delayed tracer arrival in the rostral CSF space and the nasal cavity with tracer retention in the ventral CSF space were observed in the ligation group. The maximum slopes were smaller in the ligation group at UNT (sham: 0.075 ± 0.0061, ligation: 0.044 ± 0.0086/min, P = 0.011). A significant difference was not detected in peak timings. The peak signal ratio values were lower in the ligation group at UNT (sham: 2.12 ± 0.19, ligation: 1.72 ± 0.11, P = 0.011). The elimination half-life was delayed in the ligation group at CSF_C1 (sham: 30.5 ± 2.70, ligation: 44.4 ± 12.6 min, P = 0.043), CSF_OB (sham: 30.2 ± 2.67, ligation: 44.8 ± 7.47 min, P = 0.021), and CSF_PitR (sham: 30.2 ± 2.49, ligation: 41.3 ± 7.57 min, P = 0.021).

    Conclusion: The DCLN ligation in rats blocked CSF outflow into the nasal cavity and caused CSF retention.

  • Aika Okazawa, Mami Iima, Masako Kataoka, Ryosuke Okumura, Sachiko Taka ...
    論文ID: mp.2022-0056
    発行日: 2023年
    [早期公開] 公開日: 2023/05/26
    ジャーナル オープンアクセス 早期公開

    Purpose: We aimed to investigate the diagnostic feasibility of an adjusted diffusion-weighted imaging (DWI) lexicon using multiple b values to assess breast lesions according to DWI-based breast imaging reporting and data system (BI-RADS).

    Methods: This Institutional Review Board (IRB)-approved prospective study included 127 patients with suspected breast cancer. Breast MRI was performed using a 3T scanner. Breast DW images were acquired using five b-values of 0, 200, 800, 1000, and 1500 s/mm2 (5b-value DWI) on 3T MRI. Two readers independently assessed lesion characteristics and normal breast tissue using DWI alone (5b-value DWI and 2b-value DWI with b = 0 and 800 s/mm2) according to DWI-based BI-RADS and in combination with the standard dynamic contrast-enhanced images (combined MRI). Interobserver and intermethod agreements were assessed using kappa statistics. The specificity and sensitivity of lesion classification were evaluated.

    Results: Ninety-five breast lesions (39 malignant and 56 benign) were evaluated. Interobserver agreement for lesion assessment on 5b-value DWI was very good (k ≥ 0.82) for DWI-based BI-RADS categories, lesion type, and mass characteristics; good (k = 0.75) in breast composition; and moderate (k ≥ 0.44) in background parenchymal signal (BPS) and non-mass distribution. Intermethod agreement between assessments performed using either 5b-value DWI or combined MRI was good-to-moderate (k = 0.52–0.67) for lesion type; moderate (k = 0.49–0.59) for DWI-based BI-RADS category and mass characteristics; and fair (k = 0.25–0.40) for mass shape, BPS, and breast composition. The sensitivity and positive predictive values (PPVs) for 5b-value DWI were 79.5%, 84.6% and 60.8%, 61.1% for each reader, respectively; 74.4%, 74.4% and 63.0%, 61.7% for 2b-value DWI; and 97.4%, 97.4% and 73.1%, 76.0% for combined MRI. The specificity and negative predictive values (NPVs) were 64.3%, 62.5% and 81.8%, 85.4% for 5b-value DWI; 69.6%, 67.9% and 79.6%, 79.2% for 2b-value DWI; and 75.0%, 78.6% and 97.7%, 97.8% for combined MRI.

    Conclusion: Good observer agreement was observed in the 5b-value DWI. The 5b-value DWI based on multiple b-values might have the potential to complement the 2b-value DWI; however, their diagnostic performance tended to be inferior to that of combined MRI for the characterization of breast tumors.

  • Minkyeong Kim, Tae Young Lee, Byeong Seong Kang, Woon Jung Kwon, Soyeo ...
    論文ID: mp.2022-0144
    発行日: 2023年
    [早期公開] 公開日: 2023/05/13
    ジャーナル オープンアクセス 早期公開

    Purpose: Although diffusion-weighted imaging (DWI) with ultra-high b-values is reported to be advantageous in the detection of some tumors, its applicability is not yet known in biliary malignancy. Therefore, this study aimed to evaluate the impact of measured b = 1400 s/mm2 (M1400) and calculated b = 1400 s/mm2 (C1400) DWI on image quality and quality of lesion discernibility using a modern 3T MR system compared to conventional b = 800 s/mm2 DWI (M800).

    Methods: We evaluated 56 patients who had pathologically proven biliary malignancy. All the patients underwent preoperative or baseline 3T MRI using DWI (b = 50, 400, 800, and 1400 s/mm2). The calculated DWI was obtained using a conventional DWI set (b = 50, 400, and 800). The tumor-to-bile contrast ratio (CR) and tumor SNR were compared between the different DWI images. Likert scores were given on a 5-point scale to assess the overall image quality, overall artifacts, ghost artifacts, misregistration artifacts, margin sharpness, and lesion discernibility. Repeated-measures analysis of variance with post hoc analyses was used for statistical evaluations.

    Results: The CR of the tumor-to-bile was significantly higher in both M1400 and C1400 than in M800 (Pa < 0.01). SNRs were significantly higher in M800, followed by C1400 and M1400 (Pa < 0.01). Lesion discernibility was significantly improved for M1400, followed by C1400 and M800 for both readers (Pa < 0.01).

    Conclusion: Using a 3T MRI, both measured and calculated DWI with an ultra-high b-value offer superior lesion discernibility for biliary malignancy compared to the conventional DWI.

  • Shoko Hara, Masaaki Hori, Koji Kamagata, Christina Andica, Motoki Inaj ...
    論文ID: mp.2022-0146
    発行日: 2023年
    [早期公開] 公開日: 2023/04/18
    ジャーナル オープンアクセス 早期公開
    電子付録

    Purpose: Moyamoya disease (MMD) is a cerebrovascular disease associated with steno-occlusive changes in the arteries of the circle of Willis and with hemodynamic impairment. Previous studies have reported that parenchymal extracellular free water levels may be increased and the number of neurites may be decreased in patients with MMD. The aim of the present study was to investigate the postoperative changes in parenchymal free water and neurites and their relationship with cognitive improvement.

    Methods: Multi-shell diffusion MRI (neurite orientation dispersion and density imaging and free water imaging using a bi-tensor model) was performed in 15 hemispheres of 13 adult patients with MMD (11 female, mean age 37.9 years) who had undergone revascularization surgery as well as age- and sex-matched normal controls. Parameter maps of free water and free-water-eliminated neurites were created, and the regional parameter values were compared among controls, patients before surgery, and patients after surgery.

    Results: The anterior and middle cerebral artery territories of patients showed higher preoperative free water levels (P ≤ 0.007) and lower postoperative free water levels (P ≤ 0.001) than those of normal controls. The change in the dispersion of the white matter in the anterior cerebral artery territory correlated with cognitive improvement (r = –0.75; P = 0.004).

    Conclusion: Our study suggests that increased parenchymal free water levels decreased after surgery and that postoperative changes in neurite parameters are related to postoperative cognitive improvement in adult patients with MMD. Diffusion analytical methods separately calculating free water and neurites may be useful for unraveling the pathophysiology of chronic ischemia and the postoperative changes that occur after revascularization surgery in this disease population.

  • Daiki Ito, Tetsushi Habe, Tomokazu Numano, Shigeo Okuda, Shigeyoshi So ...
    論文ID: mp.2022-0149
    発行日: 2023年
    [早期公開] 公開日: 2023/04/12
    ジャーナル オープンアクセス 早期公開

    Purpose: This study aimed to facilitate research progress in MR elastography (MRE) by providing a versatile and convenient application for MRE reconstruction, namely the MRE research tool (MRE-rTool). It can be used for a series of MRE image analyses, including phase unwrapping, arbitrary bandpass and directional filtering, noise assessment of the wave propagation image (motion SNR), and reconstruction of the elastogram in both 2D and 3D MRE acquisitions. To reinforce the versatility of MRE-rTool, the conventional method of motion SNR was modified into a new method that reflects the effects of image filtering.

    Methods: MRE tests of the phantom and liver were performed using different estimation algorithms for stiffness value (algebraic inversion of the differential equation [AIDE], local frequency estimation [LFE] in MRE-rTool, and multimodel direct inversion [MMDI] in clinical reconstruction) and acquiring dimensions (2D and 3D acquisitions). This study also tested the accuracy of masking low SNR regions using modified and conventional motion SNR under various mechanical vibration powers.

    Results: The stiffness values estimated using AIDE/LFE in MRE-rTool were comparable to that of MMDI (phantom, 3.71 ± 0.74, 3.60 ± 0.32, and 3.60 ± 0.54 kPa in AIDE, LFE, and MMDI; liver, 2.26 ± 0.31, 2.74 ± 0.16, and 2.21 ± 0.26 kPa in AIDE, LFE, and MMDI). The stiffness value in 3D acquisition was independent of the direction of the motion-encoding gradient and was more accurate than that of 2D acquisition. The masking of low SNR regions using the modified motion SNR worked better than that in the conventional motion SNR for each vibration power, especially when using a directional filter.

    Conclusion: The performance of MRE-rTool on test data reached the level required in clinical MRE studies. MRE-rTool has the potential to facilitate MRE research, contribute to the future development of MRE, and has been freely released online.

feedback
Top