Proceedings of the Japan Academy, Series B
Online ISSN : 1349-2896
Print ISSN : 0386-2208
ISSN-L : 0386-2208
Volume 94 , Issue 5
Showing 1-2 articles out of 2 articles from the selected issue
Reviews
  • Susumu KATSUMA, Takashi KIUCHI, Munetaka KAWAMOTO, Toshiaki FUJIMOTO, ...
    2018 Volume 94 Issue 5 Pages 205-216
    Published: May 11, 2018
    Released: May 11, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    The silkworm Bombyx mori has been used for silk production for over 5,000 years. In addition to its contribution to sericulture, B. mori has played an important role in the field of genetics. Classical genetic studies revealed that a gene(s) with a strong feminizing activity is located on the W chromosome, but this W-linked feminizing gene, called Feminizer (Fem), had not been cloned despite more than 80 years of study. In 2014, we discovered that Fem is a precursor of a single W chromosome-derived PIWI-interacting RNA (piRNA). Fem-derived piRNA binds to PIWI protein, and this complex then cleaves the mRNA of the Z-linked Masculinizer (Masc) gene, which encodes a protein required for both masculinization and dosage compensation. These findings showed that the piRNA-mediated interaction between the two sex chromosomes is the primary signal for the sex determination cascade in B. mori. In this review, we summarize the history, current status, and perspective of studies on sex determination and related topics in B. mori.

  • Akira HASEGAWA
    2018 Volume 94 Issue 5 Pages 217-234
    Published: May 11, 2018
    Released: May 11, 2018
    JOURNALS FREE ACCESS FULL-TEXT HTML

    I reviewed studies on the inhomogeneous seismic structure of the mantle wedge in subduction zones, in relation to corner flow and its implications for arc magmatism. Seismic studies in Tohoku clearly imaged the descending flow portion of the corner flow as a thin seismic low-velocity layer right above the slab. Slab-derived H2O is fixed to the layer as hydrous minerals, which are brought down by the slab and eventually decompose. The released H2O rises and encounters the ascending flow, formed to fill the gap caused by the descending flow. The combination of H2O addition and adiabatic decompression causes partial melting within the ascending flow. For many subduction zones, seismic tomography has distinctly imaged the ascending flow of the corner flow as a seismic low-velocity and/or high-attenuation layer in the mantle wedge inclined nearly parallel to the slab. These observations indicate that the volcanic front in subduction zones is formed both by the ascending flow and the addition of slab-derived H2O.

feedback
Top