The Subaru Telescopea) is an 8.2 m optical/infrared telescope constructed during 1991–1999 and has been operational since 2000 on the summit area of Maunakea, Hawaii, by the National Astronomical Observatory of Japan (NAOJ). This paper reviews the history, key engineering issues, and selected scientific achievements of the Subaru Telescope. The active optics for a thin primary mirror was the design backbone of the telescope to deliver a high-imaging performance. Adaptive optics with a laser-facility to generate an artificial guide-star improved the telescope vision to its diffraction limit by cancelling any atmospheric turbulence effect in real time. Various observational instruments, especially the wide-field camera, have enabled unique observational studies. Selected scientific topics include studies on cosmic reionization, weak/strong gravitational lensing, cosmological parameters, primordial black holes, the dynamical/chemical evolution/interactions of galaxies, neutron star mergers, supernovae, exoplanets, proto-planetary disks, and outliers of the solar system. The last described are operational statistics, plans and a note concerning the culture-and-science issues in Hawaii.
Viroids are non-encapsidated, single-stranded, circular RNAs consisting of 246–434 nucleotides. Despite their non-protein-encoding RNA nature, viroids replicate autonomously in host cells. To date, more than 25 diseases in more than 15 crops, including vegetables, fruit trees, and flowers, have been reported. Some are pathogenic but others replicate without eliciting disease. Viroids were shown to have one of the fundamental attributes of life to adapt to environments according to Darwinian selection, and they are likely to be living fossils that have survived from the pre-cellular RNA world. In 50 years of research since their discovery, it was revealed that viroids invade host cells, replicate in nuclei or chloroplasts, and undergo nucleotide mutation in the process of adapting to new host environments. It was also demonstrated that structural motifs in viroid RNAs exert different levels of pathogenicity by interacting with various host factors. Despite their small size, the molecular mechanism of viroid pathogenicity turned out to be more complex than first thought.
This paper describes the development and present status of seismic evaluation and seismic retrofit of existing buildings mainly for low-rise and medium-rise reinforced concrete buildings in Japan. First, since the seismic evaluation of existing buildings has close relationships with the seismic design of new buildings, a brief history of the development of seismic design, seismic evaluation, and seismic retrofit is provided in terms of major earthquake disasters mostly in Japan and associated with some major events in the U.S. Then, the development of seismic evaluation and retrofit is reviewed, focusing on the items in which the author has been deeply involved. This provides insight into previous earthquake damage, methodologies for seismic evaluation, the basic concept of the Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings, studies on the demand criteria for seismic safety, and the present status of seismic evaluation and retrofit. Finally, the typical methods of seismic retrofit and some examples of retrofitted buildings in Japan are explained.