Proceedings of the Japan Academy, Series B
Online ISSN : 1349-2896
Print ISSN : 0386-2208
ISSN-L : 0386-2208
Volume 99, Issue 1
Displaying 1-2 of 2 articles from this issue
Reviews
  • Kimitaka KAWAMURA
    2023 Volume 99 Issue 1 Pages 1-28
    Published: January 11, 2023
    Released on J-STAGE: January 11, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML

    Low molecular weight monocarboxylic acids (LMW monoacids, C1–C10) are the most abundant gaseous organic compound class in the atmosphere. Formic or acetic acid is the dominant volatile organic compound (VOC) in Earth’s atmosphere. They can largely contribute to rainwater acidity, especially in the tropical forest, and react with alkaline metals, ammonia, and amines, contributing to new particle formation and secondary organic aerosol production. Gaseous and particulate LMW monoacids were abundantly reported in China. They can be directly emitted from fossil fuel combustion and biomass burring; however, the secondary formation is more important than primary emissions via the photochemical oxidation of anthropogenic and biogenic VOCs. In this paper, we review the distributions of LMW monoacids from urban, mountain, and marine sites as well as from rainwater and alpine snow samples and discuss their sources and formation mechanisms in the atmosphere. We also discuss their importance as cloud condensation nuclei (CCN) and provide future perspectives of LMW monoacids study in the warming world.

  • Michito YOSHIZAWA, Lorenzo CATTI
    2023 Volume 99 Issue 1 Pages 29-38
    Published: January 11, 2023
    Released on J-STAGE: January 11, 2023
    JOURNAL OPEN ACCESS FULL-TEXT HTML

    Micelles are useful and widely applied molecular assemblies, formed from amphiphilic molecules, in water. The majority of amphiphiles possess an alkyl chain as the hydrophobic part. Amphiphiles bearing hydrophilic and hydrophobic polymer chains generate so-called polymeric micelles in water. This review focuses on the recent progress of “aromatic micelles”, formed from bent polyaromatic/aromatic amphiphiles, for the development of third-generation micelles. Thanks to multiple host-guest interactions, e.g., the hydrophobic effect and π-π/CH-π interactions, the present micelles display wide-ranging uptake abilities toward various hydrophobic compounds in water. In addition to such host functions, new stimuli-responsive aromatic micelles with pH, light, and redox switches, aromatic oligomer micelles, saccharide-coated aromatic micelles, and related cycloalkane-based micelles were recently developed by our group.

feedback
Top